Advertisement

Electronic Markets

, Volume 28, Issue 4, pp 453–473 | Cite as

Enhancing energy efficiency in the residential sector with smart meter data analytics

  • Konstantin HopfEmail author
  • Mariya Sodenkamp
  • Thorsten Staake
Research Paper
Part of the following topical collections:
  1. Special Issue on “Data Science and Business Analytics”

Abstract

Tailored energy efficiency campaigns that make use of household-specific information can trigger substantial energy savings in the residential sector. The information required for such campaigns, however, is often missing. We show that utility companies can extract that information from smart meter data using machine learning. We derive 133 features from smart meter and weather data and use the Random Forest classifier that allows us to recognize 19 household classes related to 11 household characteristics (e.g., electric heating, size of dwelling) with an accuracy of up to 95% (69% on average). The results indicate that even datasets with an hourly or daily resolution are sufficient to impute key household characteristics with decent accuracy and that data from different yearly seasons does not considerably influence the classification performance. Furthermore, we demonstrate that a small training data set consisting of only 200 households already reaches a good performance. Our work may serve as benchmark for upcoming, similar research on smart meter data and provide guidance for practitioners for estimating the efforts of implementing such analytics solutions.

Keywords

Green information systems Decision support systems Data analytics Energy efficiency Sustainability Classification 

JEL classification

C80 D10 M310 Q20 R20 

Notes

Acknowledgements

We thank Ilya Kozlovskiy for his contribution to the data analysis in this study. We kindly acknowledge financial support from the Swiss Federal Office of Energy (Grant numbers SI/501053-01, SI/501202-01) and want to thank Michael Moser and Roland Brüniger for the very helpful comments during the research project.

References

  1. Albert, A., & Rajagopal, R. (2013). Smart meter driven segmentation: What your consumption says about you. IEEE Transactions on Power Systems, 28(4), 4019–4030.CrossRefGoogle Scholar
  2. Albert, A., & Rajagopal, R. (2014). Cost-of-service segmentation of energy consumers. IEEE Transactions on Power Systems, 29(6), 2795–2803.  https://doi.org/10.1109/TPWRS.2014.2312721.CrossRefGoogle Scholar
  3. Allcott, H. (2011). Social norms and energy conservation. Journal of Public Economics, 95(9–10), 1082–1095.  https://doi.org/10.1016/j.jpubeco.2011.03.003.CrossRefGoogle Scholar
  4. Allcott, H., & Mullainathan, S. (2010). Behavior and energy policy. Science, 327(5970), 1204–1205.CrossRefGoogle Scholar
  5. Al-Otaibi, R., Jin, N., Wilcox, T., & Flach, P. (2016). Feature construction and calibration for clustering daily load curves from smart-meter data. IEEE Transactions on Industrial Informatics, 12(2), 645–654.  https://doi.org/10.1109/TII.2016.2528819.CrossRefGoogle Scholar
  6. Armel, K. C., Gupta, A., Shrimali, G., & Albert, A. (2013). Is disaggregation the holy grail of energy efficiency? The case of electricity. Energy Policy, 52(Supplement C), 213–234.  https://doi.org/10.1016/j.enpol.2012.08.062.CrossRefGoogle Scholar
  7. Beckel, C., Sadamori, L., & Santini, S. (2012). Towards automatic classification of private households using electricity consumption data. In G. J. Pappas (Ed.), Proceedings of the fourth ACM workshop on embedded sensing Systems for Energy-Efficiency in buildings (pp. 169–176). Toronto: ACM.CrossRefGoogle Scholar
  8. Beckel, C., Sadamori, L., & Santini, S. (2013). Automatic socio-economic classification of households using electricity consumption data. In D. Culler & C. Rosenberg (Eds.), Proceedings of the fourth international conference on future energy systems (pp. 75–86). Berkeley: ACM.CrossRefGoogle Scholar
  9. Beckel, C., Sadamori, L., Staake, T., & Santini, S. (2014). Revealing household characteristics from smart meter data. Energy, 78, 397–410.CrossRefGoogle Scholar
  10. Birt, B. J., Newsham, G. R., Beausoleil-Morrison, I., Armstrong, M. M., Saldanha, N., & Rowlands, I. H. (2012). Disaggregating categories of electrical energy end-use from whole-house hourly data. Energy and Buildings, 50, 93–102.CrossRefGoogle Scholar
  11. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.CrossRefGoogle Scholar
  12. Buchanan, K., Banks, N., Preston, I., & Russo, R. (2016). The British public’s perception of the UK smart metering initiative: Threats and opportunities. Energy Policy, 91, 87–97.  https://doi.org/10.1016/j.enpol.2016.01.003.CrossRefGoogle Scholar
  13. Chang, H. H., Wong, K. H., & Fang, P. W. (2014). The effects of customer relationship management relational information processes on customer-based performance. Decision Support Systems, 66(Supplement C), 146–159.  https://doi.org/10.1016/j.dss.2014.06.010.CrossRefGoogle Scholar
  14. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0. SPSS. Retrieved from ftp://ftp.software.ibm.com/software/analytics/spss/support/Modeler/Documentation/14/UserManual/CRISP-DM.pdf.
  15. Chicco, G. (2012). Overview and performance assessment of the clustering methods for electrical load pattern grouping. Energy, 42(1), 68–80.CrossRefGoogle Scholar
  16. Coltman, T. (2007). Why build a customer relationship management capability? The Journal of Strategic Information Systems, 16(3), 301–320.  https://doi.org/10.1016/j.jsis.2007.05.001.CrossRefGoogle Scholar
  17. Constantiou, I. D., & Kallinikos, J. (2015). New games, new rules: Big data and the changing context of strategy. Journal of Information Technology, 30(1), 44–57.  https://doi.org/10.1057/jit.2014.17.CrossRefGoogle Scholar
  18. Cramer, H. (1946). Mathematical methods of statistics. Princeton: Princeton University Press.Google Scholar
  19. Darby, S. (2006). The effectiveness of feedback on energy consumption. University of Oxford. Retrieved from http://www.usclcorp.com/news/DEFRA-report-with-appendix.pdf.
  20. de Silva, D., Xinghuo, Y., Alahakoon, D., & Holmes, G. (2011). A data mining framework for electricity consumption analysis from meter data. IEEE Transactions on Industrial Informatics, 7(3), 399–407.CrossRefGoogle Scholar
  21. Dietterich, T. G. (2000). Ensemble methods in machine learning. In: International workshop on multiple classifier systems (pp. 1–15). Springer.  https://doi.org/10.1007/3-540-45014-9_1.Google Scholar
  22. Ecoplan. (2015). Smart Metering Roll Out – Kosten und Nutzen: Aktualisierung des Smart Metering Impact Assessments 2012 (Final Report). Bern: Bundesamt für Energie Retrieved from http://www.bfe.admin.ch/php/modules/publikationen/stream.php?extlang=de&name=de_678554277.pdf&endung=Smart%20Metering%20Roll%20Out%20%96%20Kosten%20und%20Nutzen.Google Scholar
  23. European Commission. (2012). Commission recommendation of 9 march 2012 on preparations for the roll-out of smart metering systems. Official Journal of the European Union. Retrieved from http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32012H0148.
  24. European Commission. (2014). COMMISSION STAFF WORKING DOCUMENT Cost-benefit analyses & state of play of smart metering deployment in the EU-27 Accompanying the document Report from the Commission Benchmarking smart metering deployment in the EU-27 with a focus on electricity (COMMISSION STAFF WORKING DOCUMENT no. SWD/2014/0189). Brussels: European Commission.Google Scholar
  25. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.CrossRefGoogle Scholar
  26. Fei, H., Kim, Y., Sahu, S., Naphade, M., Mamidipalli, S. K., & Hutchinson, J. (2013). Heat pump detection from coarse grained smart meter data with positive and unlabeled learning. In Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1330–1338). New York: ACM.  https://doi.org/10.1145/2487575.2488203.CrossRefGoogle Scholar
  27. Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems? Journal of Machine Learning Research, 15(1), 3133–3181.Google Scholar
  28. Flath, C., Nicolay, D., Conte, T., van Dinther, C., & Filipova-Neumann, L. (2012). Cluster analysis of smart metering data. Business & Information Systems Engineering, 4(1), 31–39.  https://doi.org/10.1007/s12599-011-0201-5.CrossRefGoogle Scholar
  29. Gorodkin, J. (2004). Comparing two K-category assignments by a K-category correlation coefficient. Computational Biology and Chemistry, 28(5), 367–374.CrossRefGoogle Scholar
  30. Graml, T., Loock, C.-M., Baeriswyl, M., & Staake, T. (2011). Improving Residential Energy Consumption at Large Using Persuasive Systems. Presented at European Conference on Information Systems (ECIS). In: ECIS 2011 Proceedings. Helsinki, Finland: AIS electronic library. http://aisel.aisnet.org/ecis2011/184/.
  31. Hart, G. W. (1992). Nonintrusive appliance load monitoring. Proceedings of the IEEE, 80(12), 1870–1891.  https://doi.org/10.1109/5.192069.CrossRefGoogle Scholar
  32. Hopf, K., Sodenkamp, M., Kozlovskiy, I., & Staake, T. (2014). Feature extraction and filtering for household classification based on smart electricity meter data. Computer Science-Research and Development, 31(3), 141–148. Zürich: Springer Berlin Heidelberg.  https://doi.org/10.1007/s00450-014-0294-4.CrossRefGoogle Scholar
  33. Hopf, K., Sodenkamp, M., & Kozlovskiy, I. (2016). Energy data analytics for improved residential service quality and energy efficiency. Presented at 24. European Conference on Information Systems (ECIS), Istanbul: Turkey, June 12-15, In: ECIS 2016 Proceedings, AIS electronic library. http://aisel.aisnet.org/ecis2016_rip/73/.
  34. Hopf, K., Riechel, S., Sodenkamp, M., & Staake, T. (2017). Predictive customer data analytics – the value of public statistical data and the geographic model transferability. Presented at 38. International Conference on Information Systems (ICIS), Seoul: South Korea 2017, Dec 10-13. In: ICIS 2017 Proceedings, AIS electronic library. http://aisel.aisnet.org/icis2017/DataScience/Presentations/9/.
  35. Jurman, G., Riccadonna, S., & Furlanello, C. (2012). A comparison of MCC and CEN error measures in multi-class prediction. PLoS One, 7(8), e41882.  https://doi.org/10.1371/journal.pone.0041882.CrossRefGoogle Scholar
  36. Keogh, E., & Mueen, A. (2011). Curse of dimensionality. In: C. Sammut & G. I. Webb (Eds.), Encyclopedia of machine learning (pp. 257–258). Springer US.  https://doi.org/10.1007/978-0-387-30164-8_192.CrossRefGoogle Scholar
  37. Kim, H., Marwah, M., Arlitt, M., Lyon, G., & Han, J. (2011). Unsupervised disaggregation of low frequency power measurements. In: Proceedings of the 2011 SIAM International Conference on Data Mining (Vols. 1–0, pp. 747–758). Society for Industrial and Applied Mathematics.  https://doi.org/10.1137/1.9781611972818.64.CrossRefGoogle Scholar
  38. Kozlovskiy, I., Sodenkamp, M., Hopf, K., & Staake, T. (2016). Energy informatics for environmental, economic and social sustainability: A case of the large-scale detection of households with old heating systems. Presented at 24. European Conference on Information Systems (ECIS), Istanbul: Turkey, June 12-15, In: ECIS 2016 Proceedings, AIS electronic library. https://aisel.aisnet.org/ecis2016_rp/37.
  39. Kwac, J., Tan, C.-W., Sintov, N., Flora, J., & Rajagopal, R. (2013). Utility customer segmentation based on smart meter data: Empirical study. In: Smart Grid Communications (SmartGridComm), 2013 I.E. International Conference on (pp. 720–725).Google Scholar
  40. Lewington, J., De Chernatony, L., & Brown, A. (1996). Harnessing the power of database marketing. Journal of Marketing Management, 12(4), 329–346.CrossRefGoogle Scholar
  41. Li, X., Bowers, C. P., & Schnier, T. (2010). Classification of energy consumption in buildings with outlier detection. IEEE Transactions on Industrial Electronics, 57(11), 3639–3644.  https://doi.org/10.1109/TIE.2009.2027926.CrossRefGoogle Scholar
  42. Liaw, A., & Wiener, M. (2015). randomForest: Breiman and Cutler’s Random Forests for Classification and Regression (Version 4.6–12). Retrieved from https://cran.r-project.org/web/packages/randomForest/index.html.
  43. Loock, C.-M., Staake, T., & Thiesse, F. (2013). Motivating energy-efficient behavior with green IS: An investigation of goal setting and the role of defaults. MIS Quarterly, 37(4), 1313–1332.CrossRefGoogle Scholar
  44. McKenna, E., Richardson, I., & Thomson, M. (2012). Smart meter data: Balancing consumer privacy concerns with legitimate applications. Energy Policy, 41, 807–814.CrossRefGoogle Scholar
  45. McKerracher, C., & Torriti, J. (2013). Energy consumption feedback in perspective: Integrating Australian data to meta-analyses on in-home displays. Energy Efficiency, 6(2), 387–405.  https://doi.org/10.1007/s12053-012-9169-3.CrossRefGoogle Scholar
  46. McLoughlin, F., Duffy, A., & Conlon, M. (2012). Characterising domestic electricity consumption patterns by dwelling and occupant socio-economic variables: An Irish case study. Energy and Buildings, 48, 240–248.CrossRefGoogle Scholar
  47. Müller, O., Junglas, I., Brocke, J. v., & Debortoli, S. (2016). Utilizing big data analytics for information systems research: Challenges, promises and guidelines. European Journal of Information Systems, 25(4), 289–302.  https://doi.org/10.1057/ejis.2016.2.CrossRefGoogle Scholar
  48. Otim, S., & Grover, V. (2006). An empirical study on web-based services and customer loyalty. European Journal of Information Systems, 15(6), 527–541.  https://doi.org/10.1057/palgrave.ejis.3000652.CrossRefGoogle Scholar
  49. Romanski, P., & Kotthoff, L. (2014). FSelector: Selecting attributes. Retrieved from http://CRAN.R-project.org/package=FSelector.
  50. Sodenkamp, M., Kozlovskiy, I., Hopf, K., & Staake, T. (2017). Smart Meter Data Analytics for Enhanced Energy Efficiency in the Residential Sector. In: Wirtschaftsinformatik 2017 Proceedings. St. Gallen: AIS electronic library.Google Scholar
  51. Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45(4), 427–437.CrossRefGoogle Scholar
  52. Swiss Federal Statistical Office. (2017). Sustainable development, regional and international disparities / Statistical basis and overviews (dataset no. FSO: Je-d-21.03.01). Retrieved from https://www.bfs.admin.ch/bfs/en/home/statistics/regional-statistics/regional-portraits-key-figures/communes.assetdetail.2422865.html.
  53. Synnott, W. R. (1978). Total customer relationship. MIS Quarterly, 2(3), 15–24.CrossRefGoogle Scholar
  54. Tiefenbeck, V. (2017). Bring behaviour into the digital transformation. Nature Energy, 2(6), 17085.  https://doi.org/10.1038/nenergy.2017.85.CrossRefGoogle Scholar
  55. Tiefenbeck, V., Goette, L., Degen, K., Tasic, V., Fleisch, E., Lalive, R., & Staake, T. (2016). Overcoming salience bias: How real-time feedback fosters resource conservation. Management Science.  https://doi.org/10.1287/mnsc.2016.2646.CrossRefGoogle Scholar
  56. U.S. Energy Information Administration. (2017). How many smart meters are installed in the United States, and who has them? Retrieved January 18, 2018, from https://www.eia.gov/tools/faqs/faq.php?id=108&t=3.
  57. U.S. National Centers for Environmental Information. (2016). Climate Data Online. Retrieved January 2, 2016, from http://www.ncdc.noaa.gov/cdo-web/.
  58. Verma, A., Asadi, A., Yang, K., & Tyagi, S. (2015). A data-driven approach to identify households with plug-in electrical vehicles (PEVs). Applied Energy, 160(Supplement C), 71–79.  https://doi.org/10.1016/j.apenergy.2015.09.013.CrossRefGoogle Scholar
  59. Vihinen, M. (2012). How to evaluate performance of prediction methods? Measures and their interpretation in variation effect analysis. BMC Genomics, 13(4), S2.  https://doi.org/10.1186/1471-2164-13-S4-S2.CrossRefGoogle Scholar
  60. Watson, R. T., Boudreau, M.-C., & Chen, A. J. (2010). Information systems and environmentally sustainable development: Energy informatics and new directions for the IS community.(Essay). MIS Quarterly, 34(1), 23.CrossRefGoogle Scholar
  61. Watson, R. T., Howells, J., & Boudreau, M.-C. (2012). Energy informatics: Initial thoughts on data and process management. In J. vom Brocke, S. Seidel, & J. Recker (Eds.), Green business process management (pp. 147–159). Berlin Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-27488-6_9.CrossRefGoogle Scholar
  62. Wattal, S., Telang, R., Mukhopadhyay, T., & Boatwright, P. (2011). What’s in a “name”? Impact of use of customer information in E-mail advertisements. Information Systems Research, 23(3-part-1), 679–697.  https://doi.org/10.1287/isre.1110.0384.CrossRefGoogle Scholar
  63. Xu, M., & Walton, J. (2005). Gaining customer knowledge through analytical CRM. Industrial Management & Data Systems, 105(7), 955–971.  https://doi.org/10.1108/02635570510616139.CrossRefGoogle Scholar
  64. Yoo, Y. (2015). It is not about size: A further thought on big data. Journal of Information Technology, 30(1), 63–65.  https://doi.org/10.1057/jit.2014.30.CrossRefGoogle Scholar
  65. Zhang, T. C., Agarwal, R., Lucas, J., & Henry, C. (2011). The value of it-enabled retailer learning: Personalized product recommendations and customer store loyalty in electronic markets. MIS Quarterly, 35(4), 859–8A7.CrossRefGoogle Scholar

Copyright information

© Institute of Applied Informatics at University of Leipzig 2018

Authors and Affiliations

  1. 1.Information Systems and Energy Efficient SystemsUniversity of BambergBambergGermany
  2. 2.Department of Management, Technology and EconomicsETH ZürichZürichSwitzerland

Personalised recommendations