Advertisement

Smart e-commerce systems: current status and research challenges

  • Zhiting Song
  • Yanming Sun
  • Jiafu Wan
  • Lingli Huang
  • Jianhua Zhu
Research Paper

Abstract

With the ongoing progress in cloud computing, big data analytics (BDA) and other burgeoning technologies, the integration of intelligence and e-commerce systems now makes it possible to build e-commerce systems with enhanced efficiency, reduced transaction costs and smart information-processing patterns. However, despite the fact that smart e-commerce systems (SESs) offer great opportunities to the business field, the development of SESs is still in its infancy. Numerous issues still need to be resolved. To offer a better comprehension of SESs and facilitate future research, this paper first describes the holistic architecture of these systems and analyzes the main enablers underlying the development of SESs in terms of internet of things (IoT), social media, mobile internet, big data analytics and cloud computing. Then, the key challenges and issues pertaining to current SESs are presented, and some possible research directions are also proposed. Finally, the paper presents qualitative and quantitative depictions of SESs from a complex systems perspective, which provides a brand new idea of how to address the current SES issues.

Keywords

Smart e-commerce systems Big data analytics Cloud computing Internet of things Complex systems 

JEL classification

L81 M10 M15 

References

  1. Abbasi, A., Sarker, S., & Chiang, R. H. L. (2016). Big data research in information systems: Toward an inclusive research agenda. Journal of the Association for Information Systems, 17(2), 1–32.Google Scholar
  2. Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (1999). Towards a better understanding of context and context-awareness. In International Symposium on Handheld and Ubiquitous Computing (pp. 304-307). Springer, Berlin.Google Scholar
  3. Agarwal, R., & Tiwana, A. (2015). Evolvable systems: Through the looking glass of IS. Information Systems Research, 26(3), 473–479.CrossRefGoogle Scholar
  4. Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communication Surveys and Tutorials, 18(3), 1617–1655.CrossRefGoogle Scholar
  5. Agnihotri, R., Dingus, R., Hu, M. Y., & Krush, M. T. (2016). Social media: Influencing customer satisfaction in B2B sales. Industrial Marketing Management, 53, 172–180.CrossRefGoogle Scholar
  6. Agostinho, C., Ducq, Y., Zacharewicz, G., Sarraipa, J., Lampathaki, F., Poler, R., & Jardim-Goncalves, R. (2016). Towards a sustainable interoperability in networked enterprise information systems: Trends of knowledge and model-driven technology. Computers in Industry, 79, 64–76.CrossRefGoogle Scholar
  7. Akkermans, H. (2001). Intelligent e-business: From technology to value. IEEE Intelligent Systems, 16(4), 8–10.CrossRefGoogle Scholar
  8. Akter, S., & Wamba, S. F. (2016). Big data analytics in e-commerce: A systematic review and agenda for future research. Electronic Markets, 26(2), 173–194.CrossRefGoogle Scholar
  9. Allen, P. M., & Varga, L. (2006). A co-evolutionary complex systems perspective on information systems. Journal of Information Technology, 21(4), 229–238.CrossRefGoogle Scholar
  10. Anderson, P. (1999). Perspective: Complexity theory and organization science. Organization Science, 10(3), 216–232.CrossRefGoogle Scholar
  11. Atzori, L., Iera, A., Morabito, G., & Nitti, M. (2012). The social internet of things (SIoT) – When social networks meet the internet of things: Concept, architecture and network characterization. Computer Networks, 56(16), 3594–3608.CrossRefGoogle Scholar
  12. Baumöl, U., Hollebeek, L., & Jung, R. (2016). Dynamics of customer interaction on social media platforms. Electronic Markets, 26(3), 199–202.CrossRefGoogle Scholar
  13. Benbya, H., & McKelvey, B. (2006). Using coevolutionary and complexity theories to improve IS alignment: A multi-level approach. Journal of Information Technology, 21(4), 284–298.CrossRefGoogle Scholar
  14. Bernus, P., Goranson, T., Gøtze, J., Jensen-Waud, A., Kandjani, H., Molina, A., Noran, O., Rabelo, R. J., Romero, D., & Saha, P. (2016). Enterprise engineering and management at the crossroads. Computers in Industry, 79, 87–102.CrossRefGoogle Scholar
  15. Berti-Équille, L. (2007). Measuring and modelling data quality for quality-awareness in data mining. In Quality measures in data mining (pp. 101–126). Springer, Berlin.Google Scholar
  16. Botta, A., de Donato, W., Persico, V., & Pescapé, A. (2016). Integration of cloud computing and internet of things: A survey. Future Generation Computer Systems, 56, 684–700.CrossRefGoogle Scholar
  17. Brink, T. (2017). B2B SME management of antecedents to the application of social media. Industrial Marketing Management.  https://doi.org/10.1016/j.indmarman.2017.02.007.
  18. Busalim, A. H., & Hussin, A. R. C. (2016). Understanding social commerce: A systematic literature review and directions for further research. International Journal of Information Management, 36(6), 1075–1088.CrossRefGoogle Scholar
  19. Butler, D. (2016). A world where everyone has a robot: Why 2040 could blow your mind. Nature, 530(7591), 398–401.CrossRefGoogle Scholar
  20. Cabral, I., Grilo, A., Gonçalves-Coelho, A., & Mourão, A. (2016). An agent-based model for analyzing the impact of business interoperability on the performance of cooperative industrial networks. Data & Knowledge Engineering, 105, 107–129.CrossRefGoogle Scholar
  21. Cavalcante, E., Pereira, J., Alves, M. P., Maia, P., Moura, R., Batista, T., Delicato, F. C., & Pires, P. F. (2016). On the interplay of internet of things and cloud computing: A systematic mapping study. Computer Communications, 89-90, 17–33.CrossRefGoogle Scholar
  22. Chaâri, R., Ellouze, F., Koubâa, A., Qureshi, B., Pereira, N., Youssef, H., & Tovar, E. (2016). Cyber-physical systems clouds: A survey. Computer Networks, 108, 260–278.CrossRefGoogle Scholar
  23. Chen, D., Doumeingts, G., & Vernadat, F. (2008). Architectures for enterprise integration and interoperability: Past, present and future. Computers in Industry, 59(7), 647–659.CrossRefGoogle Scholar
  24. Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171–209.CrossRefGoogle Scholar
  25. Chen, F., Deng, P., Wan, J., Zhang, D., Vasilakos A. V., & Rong, X. (2015a). Data mining for the internet of things: Literature review and challenges. International Journal of Distributed Sensor Networks, 2015, 1–14.Google Scholar
  26. Chen, M., Hao, Y., Li, Y., Lai, C. F., & Wu, D. (2015b). On the computation offloading at ad hoc cloudlet: Architecture and service modes. IEEE Communications Magazine, 53(6), 18–24.CrossRefGoogle Scholar
  27. Chen, L., Huang, L., Li, C., & Wu, X. (2017). Self-adaptive architecture evolution with model checking: A software cybernetics approach. Journal of Systems and Software, 124, 228–246.CrossRefGoogle Scholar
  28. Choy, K. L., Lee, W. B., & Lo, V. (2003). Design of an intelligent supplier relationship management system: A hybrid case based neural network approach. Expert Systems with Applications, 24(2), 225–237.CrossRefGoogle Scholar
  29. Close, A. G., & Kukar-Kinney, M. (2010). Beyond buying: Motivations behind consumers' online shopping cart use. Journal of Business Research, 63(9–10), 986–992.CrossRefGoogle Scholar
  30. Compton, M., Barnaghi, P., Bermudez, L., GarcíA-Castro, R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., & Janowicz, K. (2012). The SSN ontology of the W3C semantic sensor network incubator group. Web Semantics: Science, Services and Agents on the World Wide Web, 17, 25–32.CrossRefGoogle Scholar
  31. Côrte-Real, N., Oliveira, T., & Ruivo, P. (2017). Assessing business value of big data analytics in European firms. Journal of Business Research, 70, 379–390.CrossRefGoogle Scholar
  32. Dellaert, B. G. C., & Häubl, G. (2012). Searching in choice mode: Consumer decision processes in product search with recommendations. Journal of Marketing Research, 49(2), 277–288.CrossRefGoogle Scholar
  33. Demirkan, H., & Delen, D. (2013). Leveraging the capabilities of service-oriented decision support systems: Putting analytics and big data in cloud. Decision Support Systems, 55(1), 412–421.CrossRefGoogle Scholar
  34. Denolf, J. M., Trienekens, J. H., Wognum, P. M., van der Vorst, J. G. A. J., & Omta, S. W. F. (2015). Towards a framework of critical success factors for implementing supply chain information systems. Computers in Industry, 68, 16–26.CrossRefGoogle Scholar
  35. El Kadiri, S., Grabot, B., Thoben, K. D., Hribernik, K., Emmanouilidis, C., von Cieminski, G., & Kiritsis, D. (2016). Current trends on ICT technologies for enterprise information systems. Computers in Industry, 79, 14–33.CrossRefGoogle Scholar
  36. El Sawy, O. A., & Nanus, B. (1989). Toward the design of robust information systems. Journal of Management Information Systems, 5(4), 33–54.CrossRefGoogle Scholar
  37. Estefan, J. A. (2008). Survey of model-based systems engineering (MBSE) methodologies. Incose MBSE initiative. http://www.omgsysml.org/MBSE_Methodology_Survey_RevB.pdf.
  38. de Farias, T. M., Roxin, A., & Nicolle, C. (2016). SWRL rule-selection methodology for ontology interoperability. Data & Knowledge Engineering, 105, 53–72.CrossRefGoogle Scholar
  39. Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., & Wasielewska, K. (2017). Semantic interoperability in the internet of things: An overview from the INTER-IoT perspective. Journal of Network and Computer Applications, 81, 111–124.CrossRefGoogle Scholar
  40. García, Á. L., del Castillo, E. F., & Fernández, P. O. (2016). Standards for enabling heterogeneous IaaS cloud federations. Computer Standards & Interfaces, 47, 19–23.CrossRefGoogle Scholar
  41. Gill, S., & Lee, B. (2015). A framework for distributed cleaning of data streams. Procedia Computer Science, 52, 1186–1191.CrossRefGoogle Scholar
  42. Gregory, G. D., Ngo, L. V., & Karavdic, M. (2017). Developing e-commerce marketing capabilities and efficiencies for enhanced performance in business-to-business export ventures. Industrial Marketing Management.  https://doi.org/10.1016/j.indmarman.2017.03.002.
  43. Gu, J., Xu, Y., Xu, H., Zhang, C., & Ling, H. (2017). Privacy concerns for mobile app download: An elaboration likelihood model perspective. Decision Support Systems, 94, 19–28.CrossRefGoogle Scholar
  44. Guo, Y., Wang, M., & Li, X. (2017). Application of an improved apriori algorithm in a mobile e-commerce recommendation system. Industrial Management & Data Systems, 117(2), 287–303.CrossRefGoogle Scholar
  45. Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information Management, 53(8), 1049–1064.CrossRefGoogle Scholar
  46. Haken, H. (1977). Synergetics. Physics Bulletin, 28(9).  https://doi.org/10.1088/0031-9112/28/9/027/meta.
  47. Han, J., Yang, Y., Huang, X., Yuen, T. H., Li, J., & Cao, J. (2016). Accountable mobile e-commerce scheme via identity-based plaintext-checkable encryption. Information Sciences, 345, 143–155.CrossRefGoogle Scholar
  48. Hao, Y., Chen, M., Hu, L., Song, J., Volk, M., & Humar, I. (2017). Wireless fractal ultra-dense cellular networks. Sensors, 17(4), 841–848.CrossRefGoogle Scholar
  49. Heinze, J., Thomann, M., & Fischer, P. (2017). Ladders to m-commerce resistance: A qualitative means-end approach. Computers in Human Behavior, 73, 362–374.CrossRefGoogle Scholar
  50. Henning, F. (2016). A theoretical framework on the determinants of organisational adoption of interoperability standards in government information networks. Government Information Quarterly.  https://doi.org/10.1016/j.giq.2015.11.008.
  51. Hew, J. J., Lee, V. H., Ooi, K. B., & Lin, B. (2016). Mobile social commerce: The booster for brand loyalty? Computers in Human Behavior, 59, 142–154.CrossRefGoogle Scholar
  52. Hillman, S., & Neustaedter, C. (2017). Trust and mobile commerce in North America. Computers in Human Behavior, 70, 10–21.CrossRefGoogle Scholar
  53. Hu, Y., Chen, H., Li, G., Li, H., Xu, R., & Li, J. (2016). A statistical training data cleaning strategy for the PCA-based chiller sensor fault detection, diagnosis and data reconstruction method. Energy and Buildings, 112, 270–278.CrossRefGoogle Scholar
  54. Hu, P., Ning, H., Qiu, T., Xu, Y., Luo, X., & Sangaiah, A. K. (2017). A unified face identification and resolution scheme using cloud computing in internet of things. Future Generation Computer Systems.  https://doi.org/10.1016/j.future.2017.03.030.
  55. Hull, G. (2015). Successful failure: What Foucault can teach us about privacy self-management in a world of Facebook and big data. Ethics and Information Technology, 17(2), 89–101.CrossRefGoogle Scholar
  56. Iqbal, S., Kiah, M. L. M., Dhaghighi, B., Hussain, M., Khan, S., Khan, M. K., & Choo, K. K. R. (2016). On cloud security attacks: A taxonomy and intrusion detection and prevention as a service. Journal of Network and Computer Applications, 74, 98–120.CrossRefGoogle Scholar
  57. Jayaraman, P. P., Yang, X., Yavari, A., Georgakopoulos, D., & Yi, X. (2017). Privacy preserving internet of things: From privacy techniques to a blueprint architecture and efficient implementation. Future Generation Computer Systems.  https://doi.org/10.1016/j.future.2017.03.001.
  58. Jiang, P., Liu, F., Wang, J., & Song, Y. (2016). Cuckoo search-designated fractal interpolation functions with winner combination for estimating missing values in time series. Applied Mathematical Modelling, 40(23–24), 9692–9718.CrossRefGoogle Scholar
  59. Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the internet of things: Perspectives and challenges. Wireless Networks, 20(8), 2481–2501.CrossRefGoogle Scholar
  60. Jo, G. S., & Chae, Y. M. (2003). Intelligent electronic commerce. Expert Systems with Applications, 24(2), 151–151.CrossRefGoogle Scholar
  61. Kalloniatis, C., Mouratidis, H., Vassilis, M., Islam, S., Gritzalis, S., & Kavakli, E. (2014). Towards the design of secure and privacy-oriented information systems in the cloud: Identifying the major concepts. Computer Standards & Interfaces, 36(4), 759–775.CrossRefGoogle Scholar
  62. Karavdic, M., & Gregory, G. (2005). Integrating e-commerce into existing export marketing theories: A contingency model. Marketing Theory, 5(1), 75–104.CrossRefGoogle Scholar
  63. Karkouch, A., Mousannif, H., Al Moatassime, H., & Noel, T. (2016). Data quality in internet of things: A state-of-the-art survey. Journal of Network and Computer Applications, 73, 57–81.CrossRefGoogle Scholar
  64. Kasiri, L. A., Cheng, K. T. G., Sambasivan, M., & Sidin, S. M. (2017). Integration of standardization and customization: Impact on service quality, customer satisfaction, and loyalty. Journal of Retailing and Consumer Services, 35, 91–97.CrossRefGoogle Scholar
  65. Kermany, N. R., & Alizadeh, S. H. (2017). A hybrid multi-criteria recommender system using ontology and neuro-fuzzy techniques. Electronic Commerce Research and Applications, 21, 50–64.CrossRefGoogle Scholar
  66. Kietzmann, J. H., Hermkens, K., McCarthy, I. P., & Silvestre, B. S. (2011). Social media? Get serious! Understanding the functional building blocks of social media. Business Horizons, 54(3), 241–251.CrossRefGoogle Scholar
  67. Kim, H., Kim, J., & Lee, Y. (2005). An empirical study of use contexts in the mobile internet, focusing on the usability of information architecture. Information Systems Frontiers, 7(2), 175–186.CrossRefGoogle Scholar
  68. Klein, A., & Lehner, W. (2009). Representing data quality in sensor data streaming environments. Journal of Data and Information Quality, 1(2).  https://doi.org/10.1145/1577840.1577845.
  69. Komarov, M., & Avdeeva, Z. (2015). Customer experience management for smart commerce based on cognitive maps. Procedia Computer Science, 55, 970–979.CrossRefGoogle Scholar
  70. Lacka, E., & Chong, A. (2016). Usability perspective on social media sites' adoption in the B2B context. Industrial Marketing Management, 54, 80–91.CrossRefGoogle Scholar
  71. Lam, H. K. S., Yeung, A. C. L., & Cheng, T. C. E. (2016). The impact of firms’ social media initiatives on operational efficiency and innovativeness. Journal of Operations Management, 47-48, 28–43.CrossRefGoogle Scholar
  72. Lau, R. Y. K., Zhao, J. L., Chen, G., & Guo, X. (2016). Big data commerce. Information Management, 53(8), 929–933.CrossRefGoogle Scholar
  73. Lee, I. (2017). Big data: Dimensions, evolution, impacts, and challenges. Business Horizons, 63(3), 293–303.CrossRefGoogle Scholar
  74. Li, E. Y., Du, T. C., & Wong, J. W. (2007). Access control in collaborative commerce. Decision Support Systems, 43(2), 675–685.CrossRefGoogle Scholar
  75. Lin, W. H., Wang, P., & Tsai, C. F. (2016). Face recognition using support vector model classifier for user authentication. Electronic Commerce Research and Applications, 18, 71–82.CrossRefGoogle Scholar
  76. Lin, X., Li, Y., & Wang, X. (2017). Social commerce research: Definition, research themes and the trends. International Journal of Information Management, 37(3), 190–201.CrossRefGoogle Scholar
  77. Malak, R., Baxter, B., & Hsiao, C. (2015). A decision-based perspective on assessing system robustness. Procedia Computer Science, 44, 619–629.CrossRefGoogle Scholar
  78. Malina, L., Hajny, J., Fujdiak, R., & Hosek, J. (2016). On perspective of security and privacy-preserving solutions in the internet of things. Computer Networks, 102, 83–95.CrossRefGoogle Scholar
  79. Malucelli, A., Palzer, D., & Oliveira, E. (2006). Ontology-based services to help solving the heterogeneity problem in e-commerce negotiations. Electronic Commerce Research and Applications, 5(1), 29–43.CrossRefGoogle Scholar
  80. Martín, D., Lamsfus, C., & Alzua-Sorzabal, A. (2016). A cloud-based platform to develop context-aware mobile applications by domain experts. Computer Standards & Interfaces, 44, 177–184.CrossRefGoogle Scholar
  81. Mell, P., & Grance, T. (2009). Perspectives on cloud computing and standards. USA: National Institute of Standards and Technology (NIST). https://csrc.nist.gov/csrc/media/events/ispab-december-2008-meeting/documents/cloud-computing-standards_ispab-dec2008_p-mell.pdf.
  82. Merali, Y. (2006). Complexity and information systems: The emergent domain. Journal of Information Technology, 21(4), 216–228.CrossRefGoogle Scholar
  83. Merali, Y., & Mckelvey, B. (2006). Using complexity science to effect a paradigm shift in information systems for the 21st century. Journal of Information Technology, 21(4), 211–215.CrossRefGoogle Scholar
  84. Merali, Y., Papadopoulos, T., & Nadkarni, T. (2012). Information systems strategy: Past, present, future? The Journal of Strategic Information Systems, 21(2), 125–153.CrossRefGoogle Scholar
  85. Mitrevski, P. J., & Hristoski, I. S. (2014). Behavioral-based performability modeling and evaluation of e-commerce systems. Electronic Commerce Research and Applications, 13(5), 320–340.CrossRefGoogle Scholar
  86. Nadoveza, D., & Kiritsis, D. (2014). Ontology-based approach for context modeling in enterprise applications. Computers in Industry, 65(9), 1218–1231.CrossRefGoogle Scholar
  87. Nagib, A. M., & Hamza, H. S. (2016). SIGHTED: A framework for semantic integration of heterogeneous sensor data on the internet of things. Procedia Computer Science, 83, 529–536.CrossRefGoogle Scholar
  88. do Nascimento, N. M., & de Lucena, C. J. P. (2017). FIoT: An agent-based framework for self-adaptive and self-organizing applications based on the internet of things. Information Sciences, 378, 161–176.CrossRefGoogle Scholar
  89. Ngai, E. W. T., Moon, K. K., Lam, S. S., Chin, E. S. K., & Tao, S. S. C. (2015). Social media models, technologies, and applications. Industrial Management & Data Systems, 115(5), 769–802.CrossRefGoogle Scholar
  90. Niemimaa, M. (2017). Information systems continuity process: Conceptual foundations for the study of the “social”. Computers & Security, 65, 1–13.CrossRefGoogle Scholar
  91. Panetto, H., Zdravkovic, M., Jardim-Goncalves, R., Romero, D., Cecil, J., & Mezgár, I. (2016). New perspectives for the future interoperable enterprise systems. Computers in Industry, 79, 47–63.CrossRefGoogle Scholar
  92. Pappas, I. O., Kourouthanassis, P. E., Giannakos, M. N., & Lekakos, G. (2017). The interplay of online shopping motivations and experiential factors on personalized e-commerce: A complexity theory approach. Telematics and Informatics, 34(5), 730–742.CrossRefGoogle Scholar
  93. Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. Communications of the ACM, 15(12), 1053–1058.CrossRefGoogle Scholar
  94. Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context aware computing for the internet of things: A survey. IEEE Communication Surveys and Tutorials, 16(1), 414–454.CrossRefGoogle Scholar
  95. Piao, C., Li, X., Pan, X., & Zhang, C. (2016). User privacy protection for a mobile commerce alliance. Electronic Commerce Research and Applications, 18, 58–70.CrossRefGoogle Scholar
  96. Qi, J., Zhang, Z., Jeon, S., & Zhou, Y. (2016). Mining customer requirements from online reviews: A product improvement perspective. Information Management, 53(8), 951–963.CrossRefGoogle Scholar
  97. Qiu, T., Luo, D., Xia, F., Deonauth, N., Si, W., & Tolba, A. (2016). A greedy model with small world for improving the robustness of heterogeneous internet of things. Computer Networks, 101, 127–143.CrossRefGoogle Scholar
  98. Ray, B. R., Abawajy, J., Chowdhury, M., & Alelaiwi, A. (2017). Universal and secure object ownership transfer protocol for the internet of things. Future Generation Computer Systems.  https://doi.org/10.1016/j.future.2017.02.020.
  99. Romero, D., & Vernadat, F. (2016). Enterprise information systems state of the art: Past, present and future trends. Computers in Industry, 79, 3–13.CrossRefGoogle Scholar
  100. Ryszard, K., & Lee, M. (2001). Artificial intelligence in electronic commerce. Lecture Notes in Computer Science, 21(12), 133–134.Google Scholar
  101. Scholz, M., Dorner, V., Schryen, G., & Benlian, A. (2017). A configuration-based recommender system for supporting e-commerce decisions. European Journal of Operational Research, 259(1), 205–215.CrossRefGoogle Scholar
  102. Schweinsberg, K., & Wegner, L. (2017). Advantages of complex SQL types in storing XML documents. Future Generation Computer Systems, 68, 500–507.CrossRefGoogle Scholar
  103. Shi, Q., Ding, X., Zuo, J., & Zillante, G. (2016). Mobile internet based construction supply chain management: A critical review. Automation in Construction, 72, 143–154.CrossRefGoogle Scholar
  104. Shu, Z., Wan, J., Zhang, D., & Li, D. (2016). Cloud-integrated cyber-physical systems for complex industrial applications. Mobile Networks and Applications, 21(5), 865–878.CrossRefGoogle Scholar
  105. Singh, A., & Chatterjee, K. (2017). Cloud security issues and challenges: A survey. Journal of Network and Computer Applications, 79, 88–115.CrossRefGoogle Scholar
  106. Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of big data challenges and analytical methods. Journal of Business Research, 70, 263–286.CrossRefGoogle Scholar
  107. Song, W., & Sakao, T. (2017). A customization-oriented framework for design of sustainable product/service system. Journal of Cleaner Production, 140, 1672–1685.CrossRefGoogle Scholar
  108. Suh, N. P. (2005). Complexity: Theory and applications. Oxford: Oxford University Press.Google Scholar
  109. To, P. L., Liao, C., & Lin, T. H. (2007). Shopping motivations on internet: A study based on utilitarian and hedonic value. Technovation, 27(12), 774–787.CrossRefGoogle Scholar
  110. Trigueros-Preciado, S., Pérez-González, D., & Solana-González, P. (2013). Cloud computing in industrial SMEs: Identification of the barriers to its adoption and effects of its application. Electronic Markets, 23(2), 105–114.CrossRefGoogle Scholar
  111. Verma, P. K., Verma, R., Prakash, A., Tripathi, R., & Naik, K. (2016). A novel hybrid medium access control protocol for inter-M2M communications. Journal of Network and Computer Applications, 75, 77–88.CrossRefGoogle Scholar
  112. Wan, J., Zhang, D., Sun, Y., Lin, K., Zou, C., & Cai, H. (2014). VCMIA: A novel architecture for integrating vehicular cyber-physical systems and mobile cloud computing. Mobile Networks and Applications, 19(2), 153–160.CrossRefGoogle Scholar
  113. Wan, J., Yi, M., Li, D., Zhang, C., Wang, S., & Zhou, K. (2016). Mobile services for customization manufacturing systems: An example of industry 4.0. IEEE Access, 4, 8977–8986.CrossRefGoogle Scholar
  114. Wan, J., Tang, S., Li, D., Wang, S., Liu, C., Abbas, H., & Vasilakos, A. V. (2017). A manufacturing big data solution for active preventive maintenance. IEEE Transactions on Industrial Informatics, 13(4), 2039–2047.CrossRefGoogle Scholar
  115. Wang, R. Y., & Strong, D. M. (1996). Beyond accuracy: What data quality means to data consumers. Journal of Management Information Systems, 12(4), 5–33.CrossRefGoogle Scholar
  116. Wang, Y., Kung, L., & Byrd, T. A. (2016). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change.  https://doi.org/10.1016/j.techfore.2015.12.019.
  117. Wasala, A., Buckley, J., Schäler, R., & Exton, C. (2015). An empirical framework for evaluating interoperability of data exchange standards based on their actual usage: A case study on XLIFF. Computer Standards & Interfaces, 42, 157–170.CrossRefGoogle Scholar
  118. Weichhart, G., Molina, A., Chen, D., Whitman, L. E., & Vernadat, F. (2016). Challenges and current developments for sensing, smart and sustainable enterprise systems. Computers in Industry, 79, 34–46.CrossRefGoogle Scholar
  119. Wen, W. (2007). A knowledge-based intelligent electronic commerce system for selling agricultural products. Computers and Electronics in Agriculture, 57(1), 33–46.CrossRefGoogle Scholar
  120. Wood, C. C. (1997). Logging, auditing and filtering for internet electronic commerce. Computer Fraud & Security, 1997(8), 1–16.Google Scholar
  121. Xie, K., Wu, Y., Xiao, J., & Hu, Q. (2016). Value co-creation between firms and customers: The role of big data-based cooperative assets. Information Management, 53(8), 1034–1048.CrossRefGoogle Scholar
  122. Yan, Z., Wang, M., Li, Y., & Vasilakos, A. V. (2016). Encrypted data management with deduplication in cloud computing. IEEE Cloud Computing, 3(2), 28–35.CrossRefGoogle Scholar
  123. Yang, S., Guo, J., & Wei, R. (2016a). Semantic interoperability with heterogeneous information systems on the internet through automatic tabular document exchange. Information Systems.  https://doi.org/10.1016/j.is.2016.10.010.
  124. Yang, Z., Shi, Y., & Yan, H. (2016b). Scale, congestion, efficiency and effectiveness in e-commerce firms. Electronic Commerce Research and Applications, 20, 171–182.CrossRefGoogle Scholar
  125. Ye, N. (2001). Robust intrusion tolerance in information systems. Information Management & Computer Security, 9(1), 38–43.CrossRefGoogle Scholar
  126. Yoo, Y., Henfridsson, O., & Lyytinen, K. (2010). Research commentary – The new organizing logic of digital innovation: An agenda for information systems research. Information Systems Research, 21(4), 724–735.CrossRefGoogle Scholar
  127. Yu, Y., Zhu, D., Wang, J., & Zhao, Y. (2017). Abnormal data detection for multivariate alarm systems based on correlation directions. Journal of Loss Prevention in the Process Industries, 45, 43–55.CrossRefGoogle Scholar
  128. Yue, X., Cai, H., Yan, H., Zou, C., & Zhou, K. (2015). Cloud-assisted industrial cyber-physical systems: An insight. Microprocessors and Microsystems, 39(8), 1262–1270.CrossRefGoogle Scholar
  129. Yuen, K. V., & Ortiz, G. A. (2017). Outlier detection and robust regression for correlated data. Computer Methods in Applied Mechanics and Engineering, 313, 632–646.CrossRefGoogle Scholar
  130. Zarpelão, B. B., Miani, R. S., Kawakani, C. T., & de Alvarenga, S. C. (2017). A survey of intrusion detection in internet of things. Journal of Network and Computer Applications, 84, 25–37.CrossRefGoogle Scholar
  131. Zhang, Y. (2016). GroRec: A group-centric intelligent recommender system integrating social, mobile and big data technologies. IEEE Transactions on Services Computing, 9(5), 786–795.CrossRefGoogle Scholar
  132. Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: State-of-the-art and research challenges. Journal of Internet Services and Applications, 1(1), 7–18.CrossRefGoogle Scholar
  133. Zhang, Y., Zhang, D., Hassan, M. M., Alamri, A., & Peng, L. (2015). CADRE: Cloud-assisted drug recommendation service for online pharmacies. Mobile Networks and Applications, 20(3), 348–355.CrossRefGoogle Scholar
  134. Zhang, X., Wang, C., Li, Z., Zhu, J., Shi, W., & Wang, Q. (2016a). Exploring the sequential usage patterns of mobile internet services based on Markov models. Electronic Commerce Research and Applications, 17, 1–11.CrossRefGoogle Scholar
  135. Zhang, D., He, Z., Qian, Y., Wan, J., Li, D., & Zhao, S. (2016b). Revisiting unknown RFID tag identification in large-scale internet of things. IEEE Wireless Communications, 23(5), 24–29.CrossRefGoogle Scholar
  136. Zhang, Y., Qiu, M., Tsai, C. W., Hassan, M. M., & Alamri, A. (2017a). Health-CPS: Healthcare cyber-physical system assisted by cloud and big data. IEEE Systems Journal, 11(1), 88–95.CrossRefGoogle Scholar
  137. Zhang, Y., Chen, M., Huang, D., Wu, D., & Li, Y. (2017b). iDoctor: Personalized and professionalized medical recommendations based on hybrid matrix factorization. Future Generation Computer Systems, 66, 30–35.CrossRefGoogle Scholar
  138. Zou, C., Zhang, D., Wan, J., Hassan, M. M., & Lloret, J. (2017). Using concept lattice for personalized recommendation system design. IEEE Systems Journal, 11(1), 305–314.CrossRefGoogle Scholar

Copyright information

© Institute of Applied Informatics at University of Leipzig 2017

Authors and Affiliations

  1. 1.School of Business AdministrationSouth China University of TechnologyGuangzhouChina
  2. 2.School of Mechanical & Automotive EngineeringSouth China University of TechnologyGuangzhouChina
  3. 3.School of MathematicsSouth China University of TechnologyGuangzhouChina

Personalised recommendations