Electronic Markets

, Volume 27, Issue 4, pp 341–350 | Cite as

Effectiveness of product return-prevention instruments: Empirical evidence

  • Gianfranco Walsh
  • Michael MöhringEmail author
Research Paper


The convenience and ease of online shopping reduce consumers’ risk perceptions, which encourages the continued growth of online retailing but also may force online retailers to deal with expensive and excessively high product return rates. Despite efforts by e-commerce management practitioners and scholars to identify determinants of customer product return behavior, scarce research investigates the effectiveness of instruments designed explicitly to reduce customers’ actual return rates. Drawing on risk theory, this article tests the influence of three important instruments on product return prevention. Three separate field experiments among customers of a well-known European online retailer reveal, unexpectedly, that the use of a money-back guarantee increases product returns, whereas product reviews decrease the product return rate. The provision of free return labels has no influence on customer product return behavior. This article concludes with some managerial and theoretical implications of these results.


E-commerce Money-back guarantee Online shopping Prevention instruments Product returns Product reviews 

JEL classification

L81 M31 


  1. Anderson, E. T., Hansen, K., & Simester, D. (2009). The option value of returns: Theory and empirical evidence. Marketing Science, 28(3), 405–423.CrossRefGoogle Scholar
  2. Asdecker, B. (2015). Returning mail-order goods: Analyzing the relationship between the rate of returns and the associated costs. Logistics Research, 8(1), 1–12.CrossRefGoogle Scholar
  3. Bae, S., & Lee, T. (2011). Product type and consumers’ perception of online consumer reviews. Electronic Markets, 21(4), 255–266.CrossRefGoogle Scholar
  4. Bechwati, N. N., & Siegal, W. S. (2005). The impact of the prechoice process on product returns. Journal of Marketing Research, 42(3), 358–367.CrossRefGoogle Scholar
  5. Ben-Shabat, H., Moriarty, M., Nilforoushan, P., Yuen, C. (2016). The 2015 global retail E-commerce index, ATKearney. Available at: (accessed 26 May 2016).
  6. Bonifield, C., Cole, C., & Schultz, R. L. (2010). Product returns on the internet: A case of mixed signals? Journal of Business Research, 63(9), 1058–1065.CrossRefGoogle Scholar
  7. Bower, A. B., & Maxham III, J. G. (2012). Return shipping policies of online retailers: Normative assumptions and the long-term consequences of fee and free returns. Journal of Marketing, 76(5), 110–124.CrossRefGoogle Scholar
  8. Büttner, O. B., & Göritz, A. S. (2008). Perceived trustworthiness of online shops. Journal of Consumer Behaviour, 7(1), 35–50.CrossRefGoogle Scholar
  9. CABS (2015). Academic Journal Guide 2015, (accessed 14 March 2017).
  10. Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(3), 345–354.CrossRefGoogle Scholar
  11. Citrin, A. V., Stem, D. E., Spangenberg, E. R., & Clark, M. J. (2003). Consumer need for tactile input: An internet retailing challenge. Journal of Business Research, 56(11), 915–922.CrossRefGoogle Scholar
  12. Davis, S., Gerstner, E., & Hagerty, M. (1995). Money back guarantees in retailing: Matching products to consumer tastes. Journal of Retailing, 71(1), 7–22.CrossRefGoogle Scholar
  13. Douthit, D. (2012). Solving the product return problem in consumer gizmos. (accessed 20 March 2016).
  14. eMarketer (2015). Apparel retailers and ecommerce: Direct marketers dominate. (accessed 19 March 2017).
  15. Forsythe, S. M., & Shi, B. (2003). Consumer patronage and risk perceptions in internet shopping. Journal of Business Research, 56(11), 867–875.CrossRefGoogle Scholar
  16. Gneezy, A. (2017). Field experimentation in marketing research. Journal of Marketing Research, 54(1), 140–143.CrossRefGoogle Scholar
  17. Grover, R., & Vriens, M. (2006). The handbook of marketing research: Uses, misuses, and future advances. Thousand Oaks: Sage.CrossRefGoogle Scholar
  18. Heckman, J. J. (1992). Randomization and social policy evaluation. In Garfinkel, I. & Manski, C. F. (eds.): Evaluating Welfare and Training Programs, Cambridge, MA: Harvard University Press, pp. 201–230.Google Scholar
  19. Heiman, A., McWilliams, B., & Zilberman, D. (2001). Demonstrations and money-back guarantees: Market mechanisms to reduce uncertainty. Journal of Business Research, 54(1), 71–84.CrossRefGoogle Scholar
  20. Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the internet? Journal of Interactive Marketing, 18(1), 38–52.CrossRefGoogle Scholar
  21. Hess, J. D., Chu, W., & Gerstner, E. (1996). Controlling product returns in direct marketing. Marketing Letters, 7(4), 307–317.CrossRefGoogle Scholar
  22. Janakiraman, N., & Ordóñez, L. (2012). Effect of effort and deadlines on consumer product returns. Journal of Consumer Psychology, 22(2), 260–271.CrossRefGoogle Scholar
  23. Janakiraman, N., Syrdal, H. A., & Freling, R. (2016). The effect of return policy leniency on consumer purchase and return decisions: A meta-analytic review. Journal of Retailing, 92(2), 226–235.CrossRefGoogle Scholar
  24. Lambrecht, A., & Tucker, C. (2012). Paying with money or effort: Pricing when customers anticipate hassle. Journal of Marketing Research, 49(1), 66–82.CrossRefGoogle Scholar
  25. Laroche, M., McDougall, G. H., Bergeron, J., & Yang, Z. (2004). Exploring how intangibility affects perceived risk. Journal of Service Research, 6(4), 373–389.CrossRefGoogle Scholar
  26. Lee, D. H. (2015). An alternative explanation of consumer product returns from the postpurchase dissonance and ecological marketing perspectives. Psychology and Marketing, 32(1), 49–64.CrossRefGoogle Scholar
  27. MacKenzie, I., Meyer, C., & Noble, S. (2013). How retailers can keep up with consumers, McKinsey. (accessed 30 May 2016).
  28. Maple, T. (2015). Ringing in the new year with a rush of online returns, (accessed 10 Mar 2017).
  29. McWilliams, B. (2012). Money-back guarantees: Helping the low-quality retailer. Management Science, 58(8), 1521–1524.CrossRefGoogle Scholar
  30. Minnema, A., Bijmolt, T. H., Gensler, S., & Wiesel, T. (2016). To keep or not to keep: Effects of online customer reviews on product returns. Journal of Retailing, 92(3), 253–267.CrossRefGoogle Scholar
  31. Mitchell, V. W. (1999). Consumer perceived risk: Conceptualisations and models. European Journal of Marketing, 33(1/2), 163–195.CrossRefGoogle Scholar
  32. Mitchell, V. W., & Greatorex, M. (1993). Risk perception and reduction in the purchase of consumer services. Service Industries Journal, 13(4), 179–200.CrossRefGoogle Scholar
  33. Mollenkopf, D. A., Rabinovich, E., Laseter, T. M., & Boyer, K. K. (2007). Managing internet product returns: A focus on effective service operations. Decision Sciences, 38(2), 215–250.CrossRefGoogle Scholar
  34. Moorthy, S., & Srinivasan, K. (1995). Signaling quality with a money-back guarantee: The role of transaction costs. Marketing Science, 14(4), 442–466.CrossRefGoogle Scholar
  35. Mudambi, S. M., & Schuff, D. (2010). What makes a helpful review? A study of customer reviews on Amazon. com. MIS Quarterly, 34(1), 185–200.CrossRefGoogle Scholar
  36. O’Leary, D. E. (2000). Enterprise resource planning systems: Systems, life cycle, electronic commerce, and risk. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  37. Ofek, E., Katona, Z., & Sarvary, M. (2011). “bricks and clicks”: The impact of product returns on the strategies of multichannel retailers. Marketing Science, 30(1), 42–60.CrossRefGoogle Scholar
  38. Palacios Fenech, J., & Tellis, G. J. (2016). The dive and disruption of successful current products: Measures, global patterns, and predictive model. Journal of Product Innovation Management, 33(1), 53–68.CrossRefGoogle Scholar
  39. Peck, J., & Childers, T. L. (2003). To have and to hold: The influence of haptic information on product judgments. Journal of Marketing, 67(2), 35–48.CrossRefGoogle Scholar
  40. Petersen, J. A., & Kumar, V. (2009). Are product returns a necessary evil? Antecedents and consequences. Journal of Marketing, 73(3), 35–51.CrossRefGoogle Scholar
  41. Petersen, J. A., & Kumar, V. (2010). Can product returns make you money? MIT Sloan Management Review, 51(3), 85–89.Google Scholar
  42. Petersen, J. A., & Kumar, V. (2015). Perceived risk, product returns, and optimal resource allocation: Evidence from a field experiment. Journal of Marketing Research, 52(2), 268–285.CrossRefGoogle Scholar
  43. Petersen, J. A., McAlister, L., Reibstein, D. J., Winer, R. S., Kumar, V., & Atkinson, G. (2009). Choosing the right metrics to maximize profitability and shareholder value. Journal of Retailing, 85(1), 95–111.CrossRefGoogle Scholar
  44. Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual Review of Psychology, 63, 539–569.CrossRefGoogle Scholar
  45. Powers, T. L., & Jack, E. P. (2015). Understanding the causes of retail product returns. International Journal of Retail & Distribution Management, 43(12), 1182–1202.CrossRefGoogle Scholar
  46. Ram, A. (2016). UK retailers count the cost of returns, Financial Times, (accessed 24 June 2016).
  47. Rao, S., Rabinovich, E., & Raju, D. (2014). The role of physical distribution services as determinants of product returns in internet retailing. Journal of Operations Management, 32(6), 295–312.CrossRefGoogle Scholar
  48. RetailMeNot (2015) Online retailing in Europe, the U.S., and Canada 2015–2016. (accessed 25 May 2016).
  49. Sahoo, N., Dellarocas, C., & Srinivasan, S. (2015). The impact of online product reviews on product returns. Boston University School of Management Research Paper, no. 2491276, Boston.Google Scholar
  50. Senecal, S., & Nantel, J. (2004). The influence of online product recommendations on consumers’ online choices. Journal of Retailing, 80(2), 159–169.CrossRefGoogle Scholar
  51. Shah, R. (2014). Fixing How Clothes Fit You Can Reshape Online Retail Logistics, (accessed 26 November 2016).
  52. Shah, D., Kumar, V., Qu, Y., & Chen, S. (2012). Unprofitable cross-buying: Evidence from consumer and business markets. Journal of Marketing, 76(3), 78–95.CrossRefGoogle Scholar
  53. Shulman, J. D., Coughlan, A. T., & Savaskan, R. C. (2010). Optimal reverse channel structure for consumer product returns. Marketing Science, 29(6), 1071–1085.CrossRefGoogle Scholar
  54. Shulman, J. D., Coughlan, A. T., & Savaskan, R. C. (2011). Managing consumer returns in a competitive environment. Management Science, 57(2), 347–362.CrossRefGoogle Scholar
  55. Soh, C., Markus, M. L., & Goh, K. H. (2006). Electronic marketplaces and price transparency: Strategy, information technology, and success. MIS Quarterly, 30(3), 705–723.CrossRefGoogle Scholar
  56. Suwelack, T., Hogreve, J., & Hoyer, W. D. (2011). Understanding money-back guarantees: Cognitive, affective, and behavioral outcomes. Journal of Retailing, 87(4), 462–478.CrossRefGoogle Scholar
  57. VHB (2015). VHB-JOURQUAL3, (accessed 14 March 2017).
  58. Walsh, G., & Brylla, D. (2016). Do product returns hurt relational outcomes? Some evidence from online retailing. Electronic Markets. doi: 10.1007/s12525-016-0240-3.
  59. Walsh, G., Möhring, M., Koot, C., & Schaarschmidt, M. (2014). Preventive product returns management systems-a review and model. In In: Proceedings of the 21th European conference on information systems (ECIS). Tel Aviv: Israel.Google Scholar
  60. Walsh, G., Albrecht, A. K., Kunz, W., & Hofacker, C. F. (2016). Relationship between online retailers’ reputation and product returns. British Journal of Management, 27(1), 3–20.CrossRefGoogle Scholar
  61. Weathers, D., Swain, S. D., & Grover, V. (2015). Can online product reviews be more helpful? Examining characteristics of information content by product type. Decision Support Systems, 79, 12–23.CrossRefGoogle Scholar
  62. Wrenn, B., Stevens, R. E., & Loudon, D. L. (2001). Marketing research: Text and cases. Philadelphia: Haworth Press.Google Scholar
  63. Wu, J., Wu, Y., Sun, J., & Yang, Z. (2013). User reviews and uncertainty assessment: A two stage model of consumers’ willingness-to-pay in online markets. Decision Support Systems, 55(1), 175–185.CrossRefGoogle Scholar
  64. Yalabik, B., Petruzzi, N. C., & Chhajed, D. (2005). An integrated product returns model with logistics and marketing coordination. European Journal of Operational Research, 161(1), 162–182.CrossRefGoogle Scholar
  65. Young, K. B. (1988). Product return rates. Quality, 27(5), 38–41.Google Scholar
  66. Zhou, W., & Hinz, O. (2016). Determining profit-optimizing return policies–a two-step approach on data from taobao.Com. Electronic Markets, 26(2), 103–114.CrossRefGoogle Scholar
  67. Zhu, F., & Zhang, X. (2010). Impact of online consumer reviews on sales: The moderating role of product and consumer characteristics. Journal of Marketing, 74(2), 133–148.CrossRefGoogle Scholar

Copyright information

© Institute of Applied Informatics at University of Leipzig 2017

Authors and Affiliations

  1. 1.Wirtschaftswissenschaftliche Fakultät, Lehrstuhl für Allgemeine Betriebswirtschaftslehre / MarketingFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Munich University of Applied SciencesFaculty of Computer Science and MathematicsMunichGermany

Personalised recommendations