Electronic Markets

, Volume 26, Issue 4, pp 339–355

Think, feel, bid: the impact of environmental conditions on the role of bidders’ cognitive and affective processes in auction bidding

  • Anuja Hariharan
  • Marc Thomas Philipp Adam
  • Timm Teubner
  • Christof Weinhardt
Research Paper

Abstract

Environmental conditions and the interplay of cognitive and affective processes both exert influences on bidding behavior. This paper brings the above together, considering how the (external) auction environment determines the impact of (internal) cognitive and affective processes on bidding behavior, assessed in comparison to the optimal bid. Two aspects of the auction environment were considered, namely auction dynamics (low: first-price sealed-bid auction, high: Dutch auction) and value uncertainty (low, high). In a laboratory experiment, we assess bidders’ cognitive workload and emotional arousal through physiological measurements. We find that higher auction dynamics increase the impact of emotional arousal on bid deviations, but not that of cognitive workload. Higher value uncertainty, conversely, increases the impact of cognitive workload on bid deviations, but not that of emotional arousal. Taken together, the auction environment is a critical factor in understanding the nature of the underlying decision process and its impact on bids.

Keywords

Arousal Workload Bidding Heart rate EEG 

JEL Classification

D44 D87 L81 

Supplementary material

12525_2016_224_MOESM1_ESM.docx (69 kb)
ESM 1(DOCX 69 kb)

References

  1. Adam, M. T. P., Gamer, M., Krämer, J., & Weinhardt, C. (2011a). Measuring emotions in electronic markets, Proceedings of the International Conference on Information Systems (ICIS). China: Shanghai.Google Scholar
  2. Adam, M. T. P., Krämer, J., Jähnig, C., Seifert, S., & Weinhardt, C. (2011b). Understanding auction fever: A framework for emotional bidding. Electronic Markets, 21(3), 197–207. doi:10.1007/s12525-011-0068-9.CrossRefGoogle Scholar
  3. Adam, M. T. P., Krämer, J., & Weinhardt, C. (2012). Excitement up! Price down! Measuring emotions in Dutch auctions. International Journal of Electronic Commerce, 17(2), 7–39. doi:10.2753/JEC1086-4415170201.CrossRefGoogle Scholar
  4. Adam, M. T. P., Krämer, J., & Müller, M. B. (2015). Auction fever! How time pressure and social competition Affect bidders’ arousal and bids in retail auctions. Journal of Retailing, 91(3), 468–485.CrossRefGoogle Scholar
  5. Agarwal, J., & Malhotra, N. K. (2005). An integrated model of attitude and affect. Journal of Business Research, 58(4), 483–493.CrossRefGoogle Scholar
  6. Airy, G., Mullen, T., & Yen, J. (2009). Market based adaptive resource allocation for distributed rescue teams, In Proceedings of the 6th Conference on Information Systems for Crisis Response and Management (ISCRAM). Sweden: Gothenburg.Google Scholar
  7. Ariely, D., & Simonson, I. (2003). Buying, bidding, playing, or competing? Value assessment and decision dynamics in online auctions. Journal of Consumer Psychology, 13(1), 113–123.CrossRefGoogle Scholar
  8. Ariely, D., Ockenfels, A., & Roth, A. E. (2005). An experimental analysis of ending rules in Internet auctions. The Rand Journal of Economics, 36(4), 890–907.Google Scholar
  9. Astor, P. J., Adam, M. T. P., Jähnig, C. C., & Seifert, S. (2011). Measuring regret: Emotional aspects of auction design. ECIS 2011 Proceedings, Paper 88.Google Scholar
  10. Astor, P. J., Adam, M. T. P., Jerčić, P., Schaaff, K., & Weinhardt, C. (2014). Integrating biosignals into Information Systems: A NeuroIS tool for improving emotion regulation. Journal of Management Information Systems, 30(3), 247–278.CrossRefGoogle Scholar
  11. Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173.Google Scholar
  12. Binmore, K., & Klemperer, P. (2002). The biggest auction ever: the sale of the British 3G telecom licences. The Economic Journal, 112(478), C74–C96.CrossRefGoogle Scholar
  13. Bioplux (2007). Wireless Biosignals, PLUX - Systems Available at: http://www.plux.info/
  14. Cacioppo, J. T., & Petty, R. E. (1982). The need for cognition. Journal of Personality and Social Psychology, 42(1), 116–131.CrossRefGoogle Scholar
  15. Camerer, C. F., Ho, T. H., & Chong, J. K. (2004). A cognitive hierarchy model of games. The Quarterly Journal of Economics, 119(3), 861–898. doi:10.1162/0033553041502225.CrossRefGoogle Scholar
  16. Casari, M., Ham, J. C., & Kagel, J. H. (2007). Selection Bias, Demographic Effects, and Ability Effects in Common Value Auction Experiments. American Economic Review, 97(4), 1278–1304.CrossRefGoogle Scholar
  17. Charland, P., Allaire-Duquette, G., & Léger, P. M. (2014). Collecting neurophysiological data to investigate users’ cognitive states during game play. Journal on Computing, 2(3), 20–24.Google Scholar
  18. Clemons, E. K., & Weber, B. W. (1996). Alternative securities trading systems: tests and regulatory implications of the adoption of technology. Information Systems Research, 7(2), 163–188.CrossRefGoogle Scholar
  19. Cowley, E. (2013). Forgetting the anxiety: Gamblers’ reactions to outcome uncertainty. Journal of Business Research, 66(9), 1591–1597. doi:10.1016/j.jbusres.2012.12.002.CrossRefGoogle Scholar
  20. De Visser, ,. E., & Parasuraman, R. (2011). Adaptive aiding of human-robot teaming: Effects of imperfect automation on performance, trust, and workload. Journal of Cognitive Engineering and Decision Making, 5(2), 209–231.CrossRefGoogle Scholar
  21. Engelbrecht-Wiggans, R., & Katok, E. (2008). Regret and feedback information in first-price sealed-bid auctions. Management Science, 54(4), 808–819. doi:10.1287/mnsc.1070.0806.CrossRefGoogle Scholar
  22. Eriksson, K., & Sharma, D. (2003). Modeling uncertainty in buyer–seller cooperation. Journal of Business Research, 56(12), 961–970. doi:10.1016/S0148-2963(01)00331-9.CrossRefGoogle Scholar
  23. Feigh, K. M., Dorneich, M. C., & Hayes, C. C. (2012). Toward a characterization of adaptive systems: A framework for researchers and system designers. Human Factors: The Journal of the Human Factors and Ergonomics Society, 54(6), 1008–1024. doi:10.1177/0018720812443983.CrossRefGoogle Scholar
  24. Fernández, J. M., Augusto, J. C., Trombino, G., Seepold, R., & Madrid, N. M. (2013). Self-aware trader: A new approach to safer trading. Journal of Universal Computer Science, 19(15), 2292–2319.Google Scholar
  25. Goeree, J. K., & Offerman, T. (2002). Efficiency in auctions with private and common values: An experimental study. American Economic Review, 92(3), 625–643.CrossRefGoogle Scholar
  26. Gross, J. J., & John, O. P. (2003). Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85(2), 348–362.CrossRefGoogle Scholar
  27. Ham, J. C., & Kagel, J. H. (2006). Gender effects in private value auctions. Economics Letters, 92(3), 375–382.CrossRefGoogle Scholar
  28. Hariharan, A., & Adam, M. T. P. (2015). Blended emotion detection for decision support. IEEE Transactions on Human-Machine Systems, 45(4), 510–517. doi:10.1109/THMS.2015.2418231.CrossRefGoogle Scholar
  29. Hariharan, A., Adam, M. T. P., Dorner, V., Lux, E., Müller, M. B., Pfeiffer, J., & Weinhardt, C. (2015). Brownie: A platform for conducting NeuroIS experiments. Available at SSRN: http://ssrn.com/abstract=2639047
  30. Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Human Mental Workload. Amsterdam: North Holland Press.Google Scholar
  31. Holt, C. A., & Laury, S. K. (2002). Risk aversion and incentive effects. American Economic Review, 92(5), 1644–1655. doi:10.1257/000282802762024700.CrossRefGoogle Scholar
  32. Kagel, J. H., & Dyer, D. (1988). Learning in common value auctions. In R. Tietz, W. Albert, & R. Selten (Eds.), Bounded Rational Behavior in Experimental Games and Markets (pp. 184–197). Heidelberg: Springer.CrossRefGoogle Scholar
  33. Kagel, J. H., & Levin, D. (1986). The winner’s curse and public information in common value auctions. American Economic Review, 76(5), 894–920.Google Scholar
  34. Kagel, J. H., & Levin, D. (2002). Common Value Auctions and the Winners Curse. Princeton N.J: Princeton University Press. ISBN: 9781400830138Google Scholar
  35. Kagel, J. H., Levin, D., Battalio, R. C., & Meyer, D. J. (1989). First-price common value auctions: Bidder behavior and the “winner’s curse”. Economic Inquiry, 27(2), 241–258.CrossRefGoogle Scholar
  36. Kambil, A., & van Heck, E. (2004). Introduction to ‘Innovative Auction Markets’ Special Issue. Electronic Markets, 14(3), 166–169. doi:10.1080/101967804200045083.CrossRefGoogle Scholar
  37. Katok, E., & Kwasnica, A. M. (2008). Time is money: The effect of clock speed on seller’s revenue in Dutch auctions. Experimental Economics, 11(4), 344–357. doi:10.1007/s10683-007-9169-x.CrossRefGoogle Scholar
  38. Kroemer, C., Bichler, M., & Goetzendorff, A. (2016). (Un)expected bidder behavior in spectrum auctions. Group Decision and Negotiation, 25(1), 31–63. doi:10.1007/s10726-015-9431-0.CrossRefGoogle Scholar
  39. Ku, G., Malhotra, D., & Murnighan, J. K. (2005). Towards a competitive arousal model of decision-making: A study of auction fever in live and Internet auctions. Organizational Behavior and Human Decision Processes, 96(2), 89–103. doi:10.1016/j.obhdp.2004.10.001.CrossRefGoogle Scholar
  40. Lieberman, M. D. (2007). Social cognitive neuroscience: A review of core processes. Annual Review of Psychology, 58(1), 259–289. doi:10.1146/annurev.psych.58.110405.085654.CrossRefGoogle Scholar
  41. Loewenstein, G. (2000). Emotions in economic theory and economic behavior. The American Economic Review, 90(2), 426–432. doi:10.1257/aer.90.2.426.CrossRefGoogle Scholar
  42. Mann, L., & Tan, C. (1993). The hassled decision maker: The effects of perceived time pressure on information processing in decision making. Australian Journal of Management, 18(2), 197–209.CrossRefGoogle Scholar
  43. McAfee, R. P., & McMillan, J. (1987). Auctions and bidding. Journal of Economic Literature, 25(2), 699–738.Google Scholar
  44. Möllenberg, A. (2004). Internet auctions in marketing: The consumer perspective. Electronic Markets, 14(4), 360–371. doi:10.1080/10196780412331311793.CrossRefGoogle Scholar
  45. Mousavi, S., & Gigerenzer, G. (2014). Risk, uncertainty, and heuristics. Journal of Business Research, 67(8), 1671–1678. doi:10.1016/j.jbusres.2014.02.013.CrossRefGoogle Scholar
  46. Muthitachareon, A., Barut, M., & Saeed, K. A. (2014). The role of uncertainty stemming from product monetary value in online auctions: The case of search goods. International Journal of Electronic Commerce, 19(1), 65–98.CrossRefGoogle Scholar
  47. Ortiz de Guinea, A., Titah, R., & Léger, P.-M. (2013). Measure for measure: A two study multi-trait multi-method investigation of construct validity in IS research. Computers in Human Behavior, 29(3), 833–844.CrossRefGoogle Scholar
  48. Pappas, I. O., Kourouthanassis, P. E., Giannakos, M. N., & Chrissikopoulos, V. (2014). Shiny happy people buying: the role of emotions on personalized e-shopping. Electronic Markets, 24(3), 193–206.CrossRefGoogle Scholar
  49. Pope, A. T., Bogart, E. H., & Bartolome, D. S. (1995). Biocybernetic system evaluates indices of operator engagement in automated task. Biological Psychology, 40(1), 187–195. doi:10.1016/0301-0511(95)05116-3.CrossRefGoogle Scholar
  50. Punj, G., & Moore, R. (2009). Information search and consideration set formation in a web-based store environment. Journal of Business Research, 62(6), 644–650. doi:10.1016/j.jbusres.2007.04.013.CrossRefGoogle Scholar
  51. Riedl, R., Davis, F. D., & Hevner, A. R. (2014). Towards a NeuroIS research methodology: Intensifying the discussion on methods, tools, and measurement. Journal of the AIS, 15(1), i–xxxv.Google Scholar
  52. Rothkopf, M. H., & Harstad, R. M. (1994). Modeling competitive bidding: A critical essay. Management Science, 40(3), 364–384.CrossRefGoogle Scholar
  53. Shivappa, S. T., Trivedi, M. M., & Rao, B. D. (2010). Audiovisual information fusion in human–computer interfaces and intelligent environments: A survey. Proceedings of the IEEE, 98(10), 1692–1715.CrossRefGoogle Scholar
  54. Slovic, P., Finucane, M. L., Peters, E., & MacGregor, D. G. (2007). The affect heuristic. European Journal of Operational Research, 177(3), 1333–1352. doi:10.1016/j.ejor.2005.04.006.CrossRefGoogle Scholar
  55. Smith, V. L. (1976). Experimental economics: Induced value theory. American Economic Review, 66(2), 274–279.Google Scholar
  56. Smits, M., & Janssen, R. (2008). Impact of electronic auctions on health care markets. Electronic Markets, 18(1), 19–29. doi:10.1080/10196780701797607.CrossRefGoogle Scholar
  57. Teubner, T., Adam, M. T. P., & Riordan, R. (2015). The impact of computerized agents on immediate emotions, overall arousal and bidding behavior in electronic auctions. Journal of the AIS, 16(10), 838–879.Google Scholar
  58. Turel, O., Serenko, A., & Giles, P. (2011). Integrating technology addiction and use: An empirical investigation of online auction users. MIS Quarterly, 35(4), 1043–1051.Google Scholar
  59. Van den Bos, W., Li, J., Lau, T., Maskin, E., Cohen, J. D., Montague, P. R., et al. (2008). The value of victory: Social origins of the winner’s curse in common value auctions. Judgment and Decision Making, 3(7), 483–492.Google Scholar
  60. Van den Bos, W., Talwar, A., & McClure, S. M. (2013). Neural correlates of reinforcement learning and social preferences in competitive bidding. Journal of Neuroscience, 33(5), 2137–2146.CrossRefGoogle Scholar
  61. Yin, P.-L. (2006). Information dispersion and auction prices. Social Science Research Network (SSRN) Working Paper Series. doi:10.2139/ssrn.690201.Google Scholar

Copyright information

© Institute of Applied Informatics at University of Leipzig 2016

Authors and Affiliations

  • Anuja Hariharan
    • 1
  • Marc Thomas Philipp Adam
    • 2
  • Timm Teubner
    • 1
  • Christof Weinhardt
    • 1
  1. 1.Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.University of New CastleCallaghan NSWAustralia

Personalised recommendations