Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Assessing the Importance of Static and Dynamic Causative Factors on Erosion Potentiality Using SWAT, EBF with Uncertainty and Plausibility, Logistic Regression and Novel Ensemble Model in a Sub-tropical Environment

  • 27 Accesses


The sub-tropical countries like India experience large-scale land degradation due to erosion of the surface soil. So, there is a direct impact of monsoon climate in this region; large-scale water-induced erosion has gradually increased due to an extreme precipitation event. There is an unbalanced situation that happens between regolith formation and rate of surface soil erosion. The amount of agricultural production is decreasing day by day due to the degradation of topsoil. The gap between demand for the crops and the rate of production is thus rapidly increasing. Evaluation of possible erosion zones is needed to identify vulnerable areas for the implementation of suitable remedies. Estimating the morphotectonic parameters and their effect on potential for erosion is important for determining the most possible erosion zones. Here, most of the morphometric and tectonic parameters are considered as static and dynamic causative factors. Due to the diversified hydro-geomorphic association, in recent times the rate of soil erosion in the Kangsabati River Basin is very high. Here, the SWAT modelling tool was considered for the estimation of the morphometric parameters in a systematic way. The evidential belief function (EBF) with uncertainty and plausibility, logistic regression (LR) and ensemble EBF–LR were then used to estimate this region’s erosion potentiality. For estimating the erosion potentiality, the location of gully and non-gully points is considered and that is randomly divided into 70/30 ratio. It can be said from this analysis that most of the watershed of this river basin, the erosion potentiality rate, is moderate to very high. Thus, these watersheds need to be carefully analysed by implementing certain structural and non-structural measures to reduce the potential for erosion.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. Aher, P. D., Adinarayana, J., & Gorantiwar, S. D. (2014). Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: A remote sensing and GIS approach. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2014.02.028.

  2. Akgün, A., & Türk, N. (2011). Mapping erosion susceptibility by a multivariate statistical method: A case study from the Ayvalik region. NW Turkey. Computers and Geosciences. https://doi.org/10.1016/j.cageo.2010.09.006.

  3. Al-sharif, A. A. A., & Pradhan, B. (2014). Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-013-1119-7.

  4. Althuwaynee, O. F., Pradhan, B., & Lee, S. (2012). Application of an evidential belief function model in landslide susceptibility mapping. Computers & Geosciences. https://doi.org/10.1016/j.cageo.2012.03.003.

  5. Althuwaynee, O. F., Pradhan, B., Park, H. J., & Lee, J. H. (2014). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. CATENA. https://doi.org/10.1016/j.catena.2013.10.011.

  6. Altinbilek, D., Gopalakrishnan, C., Lundqvist, J., Pres, A., Turton, A., Africa, S., & Varis, O. (2008). Water resources development and management Series Editors: Asit K. Biswas and Cecilia Tortajada. Water Resources Development and Management.

  7. Ameri, A. A., Pourghasemi, H. R., & Cerda, A. (2018). Erodibility prioritization of sub-watersheds using morphometric parameters analysis and its mapping: A comparison among TOPSIS, VIKOR, SAW, and CF multi-criteria decision making models. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2017.09.210.

  8. Arabameri, A., Pradhan, B., & Rezaei, K. (2019). Gully erosion zonation mapping using integrated geographically weighted regression with certainty factor and random forest models in GIS. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2018.11.110.

  9. Arabameri, A., Pradhan, B., Rezaei, K., Yamani, M., Pourghasemi, H. R., & Lombardo, L. (2018a). Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function–logistic regression algorithm. Land Degradation and Development. https://doi.org/10.1002/ldr.3151.

  10. Arabameri, A., Rezaei, K., Pourghasemi, H. R., Lee, S., & Yamani, M. (2018b). GIS-based gully erosion susceptibility mapping: a comparison among three data-driven models and AHP knowledge-based technique. Environmental Earth Sciences. https://doi.org/10.1007/s12665-018-7808-5.

  11. Avinash, K., Jayappa, K. S., & Deepika, B. (2011). Prioritization of sub-basins based on geomorphology and morphometricanalysis using remote sensing and geographic informationsystem (GIS) techniques. Geocarto International. https://doi.org/10.1080/10106049.2011.606925.

  12. Barrett, P. (2007). Structural equation modelling: Adjudging model fit. Personality and Individual Differences. https://doi.org/10.1016/j.paid.2006.09.018.

  13. Basu, T., & Pal, S. (2019). RS-GIS based morphometrical and geological multi-criteria approach to the landslide susceptibility mapping in Gish River Basin, West Bengal, India. Advances in Space Research. https://doi.org/10.1016/j.asr.2018.10.033.

  14. Bauwe, A., Tiedemann, S., Kahle, P., & Lennartz, B. (2017). Does the temporal resolution of precipitation input influence the simulated hydrological components employing the SWAT model? Journal of the American Water Resources Association. https://doi.org/10.1111/1752-1688.12560.

  15. Bhave, A. G., Mishra, A., & Raghuwanshi, N. S. (2013). A combined bottom-up and top-down approach for assessment of climate change adaptation options. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2013.08.039.

  16. Chakrabortty, R., Ghosh, S., Pal, S. C., Das, B., & Malik, S. (2018a). Morphometric analysis for hydrological assessment using remote sensing and GIS technique: A case study of Dwarkeswar River Basin of Bankura District, West Bengal. Asian Journal of Research in Social Sciences and Humanities. https://doi.org/10.5958/2249-7315.2018.00074.6.

  17. Chakrabortty, R., Pal, S. C., Malik, S., & Das, B. (2018b). Modeling and mapping of groundwater potentiality zones using AHP and GIS technique: A case study of Raniganj Block, Paschim Bardhaman, West Bengal. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-018-0471-8.

  18. Chopra, R., Dhiman, R. D., & Sharma, P. K. (2005). Morphometric analysis of sub-watersheds in Gurdaspur district, Punjab using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/bf02990738.

  19. Chorley, R. (1995). Horton, R.E. 1945: Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America 56(2): 75–370. Progress in Physical Geography. https://doi.org/10.1177/030913339501900406

  20. Choudhari, P. P., Nigam, G. K., Singh, S. K., & Thakur, S. (2018). Morphometric based prioritization of watershed for groundwater potential of Mula river basin, Maharashtra, India. Geology, Ecology, and Landscapes. https://doi.org/10.1080/24749508.2018.1452482.

  21. Chowdary, V. M., Ramakrishnan, D., Srivastava, Y. K., Chandran, V., & Jeyaram, A. (2009). Integrated water resource development plan for sustainable management of mayurakshi watershed. India using remote sensing and GIS: Water Resources Management. https://doi.org/10.1007/s11269-008-9342-9.

  22. Chowdhuri, I., Pal, S. C., & Chakrabortty, R. (2019). Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India. Advances in Space Research. https://doi.org/10.1016/j.asr.2019.12.003.

  23. Das, B., & Pal, S. C. (2019a). Assessment of groundwater recharge and its potential zone identification in groundwater-stressed Goghat-I block of Hugli District, West Bengal, India. Environment, Development and Sustainability.,10, 1–12. https://doi.org/10.1007/s10668-019-00457-7.

  24. Das, B., & Pal, S. C. (2019b). Combination of GIS and fuzzy-AHP for delineating groundwater recharge potential zones in the critical Goghat-II block of West Bengal, India. HydroResearch,2, 21–30. https://doi.org/10.1016/j.hydres.2019.10.001.

  25. Das, B., Pal, S. C., Malik, S., & Chakrabortty, R. (2019). Modeling groundwater potential zones of Puruliya district, West Bengal, India using remote sensing and GIS techniques. Geology, Ecology, and Landscapes. https://doi.org/10.1080/24749508.2018.1555740.

  26. Debanshi, S., & Pal, S. (2018). Assessing gully erosion susceptibility in Mayurakshi river basin of eastern India. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-018-0224-x.

  27. Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. The Annals of Mathematical Statistics. https://doi.org/10.1214/aoms/1177698950.

  28. Dinesh, A. C., Joseph Markose, V., & Jayappa, K. S. (2012). Bearing, azimuth and drainage (bAd) calculator: A new GIS supported tool for quantitative analyses of drainage networks and watershed parameters. Computers & Geosciences. https://doi.org/10.1016/j.cageo.2012.05.016.

  29. Dou, J., Yunus, A. P., Tien Bui, D., Merghadi, A., Sahana, M., Zhu, Z., et al. (2019). Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.01.221.

  30. Easton, Z. M., Fuka, D. R., White, E. D., Collick, A. S., Biruk Ashagre, B., McCartney, M., et al. (2010). A multi basin SWAT model analysis of runoff and sedimentation in the Blue Nile. Ethiopia. Hydrology and Earth System Sciences. https://doi.org/10.5194/hess-14-1827-2010.

  31. Efendigil, T., Önüt, S., & Kahraman, C. (2009). A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: A comparative analysis. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2008.08.058.

  32. Elwell, H. A., & Stocking, M. A. (1976). Vegetal cover to estimate soil erosion hazard in Rhodesia. Geoderma. https://doi.org/10.1016/0016-7061(76)90071-9.

  33. Esper Angillieri, M. Y. (2008). Morphometric analysis of Colangüil river basin and flash flood hazard, San Juan, Argentina. Environmental Geology. https://doi.org/10.1007/s00254-007-0969-2.

  34. Fadil, A., Rhinane, H., Kaoukaya, A., Kharchaf, Y., & Bachir, O. A. (2011). Hydrologic Modeling of the Bouregreg Watershed (Morocco) Using GIS and SWAT Model. Journal of Geographic Information System. https://doi.org/10.4236/jgis.2011.34024.

  35. Feizizadeh, B., & Blaschke, T. (2014). An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility mapping. International Journal of Geographical Information Science. https://doi.org/10.1080/13658816.2013.869821.

  36. Feizizadeh, B., Blaschke, T., & Nazmfar, H. (2014). GIS-based ordered weighted averaging and Dempster-Shafer methods for landslide susceptibility mapping in the Urmia Lake Basin, Iran. International Journal of Digital Earth. https://doi.org/10.1080/17538947.2012.749950

  37. Fernández, C., Vega, J. A., & Vieira, D. C. S. (2010). Assessing soil erosion after fire and rehabilitation treatments in NW Spain: Performance of rusle and revised Morgan-Morgan-Finney models. Land Degradation and Development. https://doi.org/10.1002/ldr.965.

  38. Flanagan, D., & Nearing, M. (1995). USDA water erosion prediction project: Hillslope profile and watershed model documentation, NSERL Rep. 10. Agric. Res. Serv., West Lafayette, Indiana.

  39. Gajbhiye, S., Mishra, S. K., & Pandey, A. (2014). Prioritizing erosion-prone area through morphometric analysis: an RS and GIS perspective. Applied Water Science. https://doi.org/10.1007/s13201-013-0129-7.

  40. Garosi, Y., Sheklabadi, M., Conoscenti, C., Pourghasemi, H. R., & Van Oost, K. (2019). Assessing the performance of GIS- based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.02.093.

  41. Gayen, A., & Saha, S. (2017). Application of weights-of-evidence (WoE) and evidential belief function (EBF) models for the delineation of soil erosion vulnerable zones: A study on Pathro river basin, Jharkhand, India. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-017-0362-4.

  42. Gelagay, H. S., & Minale, A. S. (2016). Soil loss estimation using GIS and Remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia. International Soil and Water Conservation Research. https://doi.org/10.1016/j.iswcr.2016.01.002.

  43. Ghosh, S., & Guchhait, S. K. (2016). Geomorphic threshold estimation for gully erosion in the lateritic soil of Birbhum, West Bengal, India. SOIL Discussions. https://doi.org/10.5194/soil-2016-48.

  44. Gupta, A. (2011). Tropical geomorphology. Tropical Geomorphology. https://doi.org/10.1017/CBO9780511978067.

  45. Haidarian-Aghakhani, M., Tamartash, Reza, Jafarian, Z., Tarkesh-Esfahani, M., & Tatian, M. (2017). Predicting the impacts of climate change on Persian oak (Quercus brantii) using Species Distribution Modelling in Central Zagros for conservation planning. Journal of Environmental Studies. https://doi.org/10.22059/jes.2017.233756.1007441.

  46. Hembram, T. K., & Saha, S. (2018). Prioritization of sub-watersheds for soil erosion based on morphometric attributes using fuzzy AHP and compound factor in Jainti River basin, Jharkhand, Eastern India. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-018-0247-3.

  47. Horton, R. E. (1932). Drainage-basin characteristics. Eos, Transactions American Geophysical Union.. https://doi.org/10.1029/TR013i001p00350.

  48. Horton, R. E. (1945). Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America. doi:10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2

  49. Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2015). Manifestation of LiDAR-derived parameters in the spatial prediction of landslides using novel ensemble evidential belief functions and support vector machine models in GIS. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2014.2341276.

  50. Kachouri, S., Achour, H., Abida, H., & Bouaziz, S. (2015). Soil erosion hazard mapping using Analytic Hierarchy Process and logistic regression: a case study of Haffouz watershed, central Tunisia. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-014-1464-1.

  51. Kanth, T. A., & Hassan, Z. (2012). Morphometric analysis and prioritization of watersheds for soil and water resource management in wular catchment using geo-spatial tools. International Journal of Geology, Earth and Environmental Sciences.,2, 30–41.

  52. Kaplan, B., & Maxwell, J. A. (2006). Qualitative research methods for evaluating computer information systems. Evaluating the Organizational Impact of Healthcare Information Systems. https://doi.org/10.1007/0-387-30329-4_2.

  53. Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., et al. (2016). FORUM paper: The significance of soils and soil science towards realization of the UN sustainable development goals (SDGs). SOIL Discussions.,10, 1–12. https://doi.org/10.5194/soil-2015-88.

  54. Kelson, K. I., & Wells, S. G. (1989). Geologic influences on fluvial hydrology and bedload transport in small mountainous watersheds, Northern New Mexico, USA. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.3290140803.

  55. King, K. W., Arnold, J. G., & Bingner, R. L. (1999). Comparison of Green-Ampt and curve number methods on Goodwin Creek Watershed using SWAT. Transactions of the American Society of Agricultural Engineers. https://doi.org/10.13031/2013.13272.

  56. Koskivaara, E. (2004). Artificial neural networks in analytical review procedures. Managerial Auditing Journal. https://doi.org/10.1108/02686900410517821.

  57. Kottagoda, S. D., & Abeysingha, N. S. (2017). Morphometric analysis of watersheds in Kelani river basin for soil and water conservation. Journal of the National Science Foundation of Sri Lanka. https://doi.org/10.4038/jnsfsr.v45i3.8192.

  58. Kouli, M., Soupios, P., & Vallianatos, F. (2009). Soil erosion prediction using the revised universal soil loss equation (RUSLE) in a GIS framework. Chania, Northwestern Crete, Greece: Environmental Geology. https://doi.org/10.1007/s00254-008-1318-9.

  59. Kuo, R. J., & Xue, K. C. (1998). An intelligent sales forecasting system through integration of artificial neural network and fuzzy neural network. Computers in Industry. https://doi.org/10.1016/s0166-3615(98)00066-9.

  60. Lal, R. (2003). Soil erosion and the global carbon budget. Environment International. https://doi.org/10.1016/S0160-4120(02)00192-7.

  61. Lal, Rattan. (2014). Soil conservation and ecosystem services. International Soil and Water Conservation Research. https://doi.org/10.1016/S2095-6339(15)30021-6.

  62. Lama, S., & Maiti, R. (2019). Morphometric analysis of Chel River Basin, West Bengal, India, using geographic information system. Earth Science,12(1), 1–23.

  63. Ligmann-Zielinska, A. (2013). Spatially-explicit sensitivity analysis of an agent-based model of land use change. International Journal of Geographical Information Science. https://doi.org/10.1080/13658816.2013.782613.

  64. Lin, C. Y., Lin, W. T., & Chou, W. C. (2002). Soil erosion prediction and sediment yield estimation: The Taiwan experience. Soil and Tillage Research. https://doi.org/10.1016/S0167-1987(02)00114-9.

  65. Lykoudi, E., & Angelaki, M. (2018). The contribution of the morphometric parameters of an hydrographic network to the investigation of the neotectonic activity: An application to the upper acheloos River. Bulletin of the Geological Society of Greece. https://doi.org/10.12681/bgsg.16913.

  66. Malpica, J. A., Alonso, M. C., & Sanz, M. A. (2007). Dempster-Shafer Theory in geographic information systems: A survey. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2005.11.011.

  67. Mascaro, S., & Korb, K. (2010). Learning abnormal vessel behaviour from AIS data with Bayesian networks at two time scales. Tracks A Journal Of Artists Writings.

  68. Meshram, S. G., & Sharma, S. K. (2017). Prioritization of watershed through morphometric parameters: a PCA-based approach. Applied Water Science. https://doi.org/10.1007/s13201-015-0332-9.

  69. Miller, V. (1953). A quantitative geomorphologic study of drainage basin characteristics in the clinch mountain area. Technical Report.

  70. Mishra, S. K., & Singh, V. P. (2003). Soil conservation service curve number (SCS-CN) Methodology. Water Science and Technology Library. https://doi.org/10.1007/978-94-017-0147-1.

  71. Mittal, N., Mishra, A., Singh, R., Bhave, A. G., & Van Der Valk, M. (2014). Flow regime alteration due to anthropogenic and climatic changes in the Kangsabati River. India: Ecohydrology and Hydrobiology. https://doi.org/10.1016/j.ecohyd.2014.06.002.

  72. Moglen, G. E., Eltahir, E. A. B., & Bras, R. L. (1998). On the sensitivity of drainage density to climate change. Water Resources Research. https://doi.org/10.1029/97WR02709.

  73. Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes. https://doi.org/10.1002/hyp.3360050103.

  74. Moore, I. D., Wilson, J. P., Moore, I. D., & Wilson, J. P. (1992). Length-slope factors for the revised universal soil loss equation: Simplified method of estimation. Journal of Soil and Water Conservation,47(5), 423–428.

  75. Nag, S. K. (1998). Morphometric analysis using remote sensing techniques in the Chaka sub-basin, Purulia district, West Bengal. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/bf03007341.

  76. Nag, S. K., & Chakraborty, S. (2003). Influence of rock types and structures in the development of drainage network in hard rock area. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/bf03030749.

  77. Nearing, M. A. (2013). Soil Erosion and Conservation. Environmental Modelling: Finding Simplicity in Complexity: Second Edition. https://doi.org/10.1002/9781118351475.ch22.

  78. Negahban, S., Ganjaeian, H., Ebrahimi, A., & Emami, K. (2019). Monitoring and predicting the trend of changes in residential areas using multi-timed images (Case study: Songhor city). Journal of the Earth and Space Physics. https://doi.org/10.22059/JESPHYS.2019.275076.1007084.

  79. Ng, T. L., Eheart, J. W., Cai, X., & Miguez, F. (2010). Modeling miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop. Environmental Science and Technology. https://doi.org/10.1021/es9039677.

  80. Obi Reddy, G. P., Maji, A. K., & Gajbhiye, K. S. (2004). Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India—A remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation. https://doi.org/10.1016/j.jag.2004.06.003.

  81. Oguchi, T. (1997). Drainage density and relative relief in humid steep mountains with frequent slope failure. Earth Surface Processes and Landforms. https://doi.org/10.1002/(SICI)1096-9837(199702)22:2%3c107:AID-ESP680%3e3.0.CO;2-U.

  82. Oldeman, L. R. (1994). The global extent of land degradation. Land Resilience and Sustainable Land Use: ISRIC Bi-Annual Report 19911992.

  83. Ozdemir, H., & Bird, D. (2009). Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environmental Geology. https://doi.org/10.1007/s00254-008-1235-y.

  84. Pal, S. C., & Chakrabortty, R. (2019a). Modeling of water induced surface soil erosion and the potential risk zone prediction in a sub-tropical watershed of Eastern India. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-018-0540-z.

  85. Pal, S. C., & Chakrabortty, R. (2019b). Simulating the impact of climate change on soil erosion in sub-tropical monsoon dominated watershed based on RUSLE, SCS runoff and MIROC5 climatic model. Advances in Space Research. https://doi.org/10.1016/j.asr.2019.04.033.

  86. Pal, S. C., & Chowdhuri, I. (2019). GIS-based spatial prediction of landslide susceptibility using frequency ratio model of Lachung River basin, North Sikkim, India. SN Applied Sciences. https://doi.org/10.1007/s42452-019-0422-7.

  87. Pal, S. C., & Shit, M. (2017). Application of RUSLE model for soil loss estimation of Jaipanda watershed. West Bengal. Spatial Information Research.,10, 1–12. https://doi.org/10.1007/s41324-017-0107-5.

  88. Pareta, K., & Pareta, U. (2011). Quantitative morphometric analysis of a watershed of Yamuna basin, India using ASTER (DEM) data and GIS. International Journal of Geomatics and Geosciences.

  89. Parveen, R., Kumar, U., & Singh, V. K. (2012). Geomorphometric characterization of Upper South Koel Basin, Jharkhand: A remote sensing & GIS approach. Journal of Water Resource and Protection. https://doi.org/10.4236/jwarp.2012.412120.

  90. Patel, D. P., Dholakia, M. B., Naresh, N., & Srivastava, P. K. (2012). Water harvesting structure positioning by using geo-visualization concept and prioritization of mini-watersheds through morphometric analysis in the lower Tapi Basin. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-011-0147-6.

  91. Patel, D. P., & Srivastava, P. K. (2013). Flood hazards mitigation analysis using remote sensing and GIS: Correspondence with town planning scheme. Water Resources Management. https://doi.org/10.1007/s11269-013-0291-6.

  92. Paul, I. I., & Bayode, E. N. (2012). Watershed characteristics and their implication for hydrologic response in the upper Sokoto Basin, Nigeria. Journal of Geography and Geology. https://doi.org/10.5539/jgg.v4n2p147.

  93. Prasannakumar, V., Vijith, H., Abinod, S., & Geetha, N. (2012). Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2011.11.003.

  94. Rahaman, S. A., Ajeez, S. A., Aruchamy, S., & Jegankumar, R. (2015). Prioritization of sub watershed based on morphometric characteristics using fuzzy analytical hierarchy process and geographical information system—A study of Kallar Watershed, Tamil Nadu. Aquatic Procedia.. https://doi.org/10.1016/j.aqpro.2015.02.172.

  95. Rahmati, O., Haghizadeh, A., & Stefanidis, S. (2016). Assessing the accuracy of GIS-based analytical hierarchy process for watershed prioritization; gorganrood river basin, Iran. Water Resources Management. https://doi.org/10.1007/s11269-015-1215-4.

  96. Rai, P. K., Mohan, K., Mishra, S., Ahmad, A., & Mishra, V. N. (2017). A GIS-based approach in drainage morphometric analysis of Kanhar River Basin. India. Applied Water Science.. https://doi.org/10.1007/s13201-014-0238-y.

  97. Renard, K. G., Yoder, D. C., Lightle, D. T., & Dabney, S. M. (2011). Universal soil loss equation and revised universal soil loss equation. Handbook of Erosion Modelling. https://doi.org/10.1002/9781444328455.ch8.

  98. Richard, S. M. (1968). Unclassified ad number, (June). http://www.dtic.mil/dtic/tr/fulltext/u2/840304.pdf

  99. Sahoo, S., Dhar, A., Debsarkar, A., & Kar, A. (2018a). Impact of water demand on hydrological regime under climate and LULC change scenarios. Environmental Earth Sciences. https://doi.org/10.1007/s12665-018-7531-2.

  100. Sahoo, S., Sil, I., Dhar, A., Debsarkar, A., Das, P., & Kar, A. (2018b). Future scenarios of land-use suitability modeling for agricultural sustainability in a river basin. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2018.09.099.

  101. Sajedi-Hosseini, F., Choubin, B., Solaimani, K., Cerdà, A., & Kavian, A. (2018). Spatial prediction of soil erosion susceptibility using a fuzzy analytical network process: Application of the fuzzy decision making trial and evaluation laboratory approach. Land Degradation and Development. https://doi.org/10.1002/ldr.3058.

  102. Schumm, S. A. (1956a). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bulletin of the Geological Society of America,10, 1–12. https://doi.org/10.1130/0016-7606(1956)67%5b597:EODSAS%5d2.0.CO;2.

  103. Schumm, S. A. (1956b). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bulletin of the Geological Society of America. https://doi.org/10.1130/0016-7606(1956)67%5b597:EODSAS%5d2.0.CO;2.

  104. Shen, Z. Y., Gong, Y. W., Li, Y. H., Hong, Q., Xu, L., & Liu, R. M. (2009). A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the three gorges reservoir area. Agricultural Water Management. https://doi.org/10.1016/j.agwat.2009.04.017.

  105. Smith, G.-H. (1935). The relative relief of Ohio. Geographical Review. https://doi.org/10.2307/209602.

  106. Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science. https://doi.org/10.2475/ajs.248.9.655.

  107. Sreedevi, P. D., Owais, S., Khan, H. H., & Ahmed, S. (2009). Morphometric analysis of a watershed of South India using SRTM data and GIS. Journal of the geological society of india, 73(4), 543–552.

  108. Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Bulletin of the Geological Society of America. https://doi.org/10.1130/0016-7606(1952)63%5b1117:haaoet%5d2.0.co;2.

  109. Strahler. (1957a). Quantitative classification of watershed geomorphology. Transactions, American Geophysical Union.

  110. Strahler, A. N. (1957b). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union.. https://doi.org/10.1029/TR038i006p00913.

  111. Strahler 1964. (n.d.).

  112. Tang, W., & Davidson, C. I. (2004). Erosion of limestone building surfaces caused by wind-driven rain: 2. Numerical modeling. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2004.06.014.

  113. Tehrany, M. S., Shabani, F., Javier, D. N., & Kumar, L. (2017). Soil erosion susceptibility mapping for current and 2100 climate conditions using evidential belief function and frequency ratio. Geomatics, Natural Hazards and Risk.. https://doi.org/10.1080/19475705.2017.1384406.

  114. Teng, H., Liang, Z., Chen, S., Liu, Y., Viscarra Rossel, R. A., Chappell, A., et al. (2018). Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.04.146.

  115. Thomas, J., Joseph, S., & Thrivikramji, K. P. (2018). Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats. India using RUSLE and GIS: Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2017.05.011.

  116. Thomas, A. W., Snyder, W. M., Mills, W. C., & Dillard, A. L. (1991). Erosion risk assessment for soil conservation planning. Soil Technology.,4, 373–389. https://doi.org/10.1016/0933-3630(91)90015-F.

  117. W. G. V. B., & Thornbury, W. D. (2006). Principles of geomorphology. The Geographical Journal. doi:10.2307/1791828

  118. ul Hassan, Z. (2012). Morphometric analysis and prioritization of watersheds for soil and water resource management in wular catchment using geo-spatial tools. International Journal of Geology, Earth and Environmental Sciences.

  119. van Griensven, A., & Meixner, T. (2007). A global and efficient multi-objective auto-calibration and uncertainty estimation method for water quality catchment models. Journal of Hydroinformatics. https://doi.org/10.2166/hydro.2007.104.

  120. van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., & Srinivasan, R. (2006). A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2005.09.008.

  121. Wang, L. J., Guo, M., Sawada, K., Lin, J., & Zhang, J. (2016). A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network. Geosciences Journal. https://doi.org/10.1007/s12303-015-0026-1.

  122. Wischmeier, W. H., & Smith, D. D. (1960). A universal soil-loss equation to guide conservation farm planning. In: Transactions 7th international congress soil science

  123. Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: A guide to conservation planning. Agriculture Handbook.

  124. Yadav, S. K., Singh, S. K., Gupta, M., & Srivastava, P. K. (2014). Morphometric analysis of upper tons basin from northern foreland of peninsular India using CARTOSAT satellite and GIS. Geocarto International. https://doi.org/10.1080/10106049.2013.868043.

  125. Yao, Y., Liu, X., Li, X., Liu, P., Hong, Y., Zhang, Y., et al. (2017). Simulating urban land-use changes at a large scale by integrating dynamic land parcel subdivision and vector-based cellular automata. International Journal of Geographical Information Science. https://doi.org/10.1080/13658816.2017.1360494.

  126. Zhang, Y., Degroote, J., Wolter, C., & Sugumaran, R. (2009). Integration of modified universal soil loss equation (Musle) into a GIS framework to assess soil erosion risk. Land Degradation and Development. https://doi.org/10.1002/ldr.893.

  127. Zhang, X. C., & Nearing, M. A. (2005). Impact of climate change on soil erosion, runoff, and wheat productivity in central Oklahoma. CATENA. https://doi.org/10.1016/j.catena.2005.03.009.

Download references


The authors are thankful to Senthil Kumar (Executive Editor, Journal of the Indian Society of Remote Sensing) and reviewers for their valuable suggestions regarding the improvement of the manuscript.

Author information

Correspondence to Subodh Chandra Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chakrabortty, R., Pal, S.C., Chowdhuri, I. et al. Assessing the Importance of Static and Dynamic Causative Factors on Erosion Potentiality Using SWAT, EBF with Uncertainty and Plausibility, Logistic Regression and Novel Ensemble Model in a Sub-tropical Environment. J Indian Soc Remote Sens (2020). https://doi.org/10.1007/s12524-020-01110-x

Download citation


  • Land degradation
  • Soil erosion
  • GIS
  • Ensemble model