A Review of RUSLE Model

  • 157 Accesses


In this paper, we attempted to review the soil erosion studies conducted throughout the globe using Revised Universal Soil Loss Equation (RUSLE). We searched the SCI, Scopus, Web of Science, Google Scholar database and various theses for this study. Though RUSLE is the most widely used model for estimation of soil erosion, the factors, namely rainfall erosivity, soil erodibility, slope length and steepness, cover management and conservation practice; vary greatly over different climatic zones, soil properties, slope, land cover and crop phase, respectively. Depending upon those variations, researchers have developed various sets of equation for different factors of RUSLE. These equations can be useful to map soil loss for many places on this planet.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2


  1. Adediji, A., Tukur, A., & Adepoju, K. (2010). Assessment of revised universal soil loss equation (RUSLE) in Katsina Area, Katsina State of Nigeria using remote sensing (RS) and geographic information system (GIS). Iranica Journal of Energy & Environment,1(3), 255–264.

  2. Agarwal, D., et al. (2016). Soil erosion mapping of watershed in Mirzapur district using RUSLE model in GIS environment. International Journal of Students’ Research In Technology & Management,4(3), 56–63.

  3. Agele, D., Lihan, T., Sahibin, A., & Rahman, Z. (2013). Application of the RUSLE model in forecasting soil erosion at downstream of the Pahang river basin, Malaysia. Journal of Applied Sciences Research,9(1), 413–424.

  4. Amsalu, T., & Mengaw, A. (2014). GIS based soil loss estimation using RUSLE model: The case of Jabi Tehinan Woreda, ANRS, Ethiopia. Natural Resources,5, 616–626.

  5. Angima, S., et al. (2003). Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture, Ecosystems & Environment,97, 295–308.

  6. Arnoldus, H., Boodt, M. & Gabriels, D., (1980). An approximation of the rainfall factor in the Universal Soil Loss Equation. s.l.:s.n.

  7. Babu, R., Dhyani, B., & Kumar, N. (2004). Assessment of erodibility status and refined Iso- erodent map of India. Indian Journal of Soil Conservation,32(2), 171–177.

  8. Babu, R., Tejwani, K., Agrawal, M. & Bhusan, L., (1979). Rainfall intensity duration-return equation and nomographs of India.

  9. Baby, A., & Nair, A. (2016). Soil erosion estimation of Kuttiyadi River Basin Using RUSLE. International Advanced Research Journal in Science, Engineering and Technology,3(3), 275–279.

  10. Benkobi, L., Trlica, M., & Smith, J. (1994). Evaluation of a redefined surface cover sub-factor for use in RUSLE. Journal of Range Management,47, 74–78.

  11. Bewket, W., & Teferi, E. (2009). Assessment of soil erosion hazard and prioritization for treatment at the watershed level: Case study in the Chemoga watershed, Blue Nile Basin, Ethiopia. Land Degradation & Development,20, 609–622.

  12. Bhandari, K., & Darnsawasdi, R. (2015). Application of remote sensing and participatory soil erosion assessment approach for soil erosion mapping in a watershed. Walailak Journal of Science and Technology,12(8), 689–702.

  13. Bhat, S., et al. (2017). Soil erosion modeling using RUSLE & GIS on micro watershed of J&K. Journal of Pharmacognosy and Phytochemistry,6(5), 838–842.

  14. Biswas, S. S., & Pani, P. (2015). Estimation of soil erosion using RUSLE and GIS techniques: A case study of Barakar River basin, Jharkhand. India. Modeling Earth Systems and Environment,1(4), 1–13.

  15. Bonilla, C. A., Reyes, J. L., & Magri, A. (2010). Water erosion prediction using the revised universal soil loss equation (RUSLE) in a GIS framework, Central Chile. Chilean Journal of Agricultural Research,70(1), 159–169.

  16. Bu, Z., et al. (2003). The progress of quantitative remote sensing method for annual soil losses and its application in Taihu-Lake Watersheds. Acta Pedol Sin,40(1), 1–9. (in Chinese).

  17. Cai, C. (1998). Prediction of nutrients loss caused by soil erosion and assessment of fertility with GIS at small watershed level. PhD thesis.

  18. Chatterjee, S., Krishna, A. P., & Sharma, A. P. (2014). Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environmental Earth Sciences,71, 357–374.

  19. Chen, T., Li, P. & Zhang, L., (2008). Retrieving vegetation cover by using BP neural network based on ‘‘Beijing-1’’ microsatellite data. China. In The International conference on earth observation data processing and analysis (ICEODPA2008).

  20. Chen, T., et al. (2011). Regional soil erosion risk mapping using RUSLE, GIS, and remote sensing a case study in Miyun Watershed, North China. Environmental Earth Sciences,63, 533–541.

  21. Dahe, P., & Borate, P. (2015). Development of erosion hotspots for Kaas Plateau (ESZ) of Western Ghat, Maharashtra using RUSLE and arc GIS. International Journal of Remote Sensing & Geoscience (IJRSG),4(4), 35–43.

  22. Das, G., & Guchait, R. (2016). Modeling of risk of soil erosion in Kharkai Watershed using RUSLE and TRMM Data: A geospatial approach. International Journal of Science and Research (IJSR), 5(10), 1–10.

  23. Demirci, A., & Karaburun, A. (2012). Estimation of soil erosion using RUSLE in a GIS framework a case study in the Buyukcekmece Lake watershed, northwest Turkey. Environmental Earth Sciences,66, 903–913.

  24. Desmet, P., & Govers, G. (1996). A GIS-procedure for the automated calculation of the USLE LS-factor on topographically complex landscape units. Journal of Soil and Water Conservation,51(5), 427–433.

  25. Diodato, N. (2004). Estimating Rusle’s rainfall factor in the part of Italy with a Mediterranean rainfall regime. Hydrology and Earth System Sciences,8, 103–107.

  26. Efthimiou, N., Lykoudi, E., & Karavitis, C. (2014). Soil erosion assessment using the RUSLE model and GIS. European Water,47, 15–30.

  27. El-Swaify, S., & Dangler, E. (1976). Erodibilities of selected tropical soils in relation to structural and hydrologic parameters. In G. Foster (Ed.), Soil Erosion Prediction and Control (pp. 105–114). Ankeny: Soil and Water Conservation Society.

  28. Ferro, V., Giordano, G., & Lovino, M. (1991). Isoerosivity and erosion risk map for Sicily. Hydrological Sciences Journal,36(6), 549–564.

  29. Flabouris, K. (2008). Study of rainfall factor R on the RUSLE law.

  30. Foster, G., McCool, D., Renard, K., & Moldenhauer, W. (1981). Conversion of the universal soil loss equation to SI metric units. Journal of Soil and Water Conservation,36(6), 355–359.

  31. Foster, G., Meyer, L., & Onstad, C. (1977). An erosion equation derived from basic erosion principles. Transactions of the ASAE,20(4), 683–687.

  32. Fu, B. J., et al. (2005). Assessment of soil erosion at large watershed scale Using RUSLE and GIS: A case study in the Loess Plateau of China. Land Degradation & Development,16, 73–85.

  33. Ganasri, B., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS—A case study of Nethravathi Basin. Geoscience Frontiers,7, 953–961.

  34. Gashaw, T., Tulu, T., & Argaw, M. (2017). Erosion risk assessment for prioritization of conservation measures in Geleda watershed, Blue Nile basin, Ethiopia. Environmental Systems Research, 6(1), 1–14.

  35. Gashaw, T., Tulu, T., & Argaw, M. (2017b). Erosion risk assessment for prioritization of conservation measures in Geleda watershed, Blue Nile basin, Ethiopia. Environmental Systems Research,6(1), 1–14.

  36. Gaudasasmita, K. (1987). Contribution to geo-information system operation for prediction of erosion. ITC, Netherlands: s.n.

  37. Gelagay, H. (2016). RUSLE and SDR model based sediment yield assessment in a GIS and remote sensing environment: A case study of Koga Watershed, Upper Blue Nile Basin, Ethiopia. Hydrology Current Research,7(2), 239.

  38. Ghosh, K. G., Mukhopadhyay, S., & Pal, S. (2015). Surface runoff and soil erosion dynamics: A case study on Bakreshwar river basin, eastern India. International Research Journal of Earth Sciences,3(7), 11–22.

  39. Gitas, I. et al. (2009). Multi-temporal soil erosion risk assessment in N. Chalkidiki using a modified USLE raster model. s.l., In EARSeL eProceedings (pp. 40–52).

  40. Goldman, S., & Wischmeier, W. (1986). Erosion and sediment control handbook. New York: McGraw Hill.

  41. Gutman, G., & Ignatov, A. (1998). The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. International Journal of Remote Sensing,19(8), 1533–1543.

  42. Hammad, A. A., Lundekvam, H., & Børresen, T. (2005). Adaptation of RUSLE in the eastern part of the mediterranean region. Environmental Management,34(6), 829–841.

  43. Helden, U. (1987). An assessment of woody biomass, community forests, land use and soil erosion in Ethiopia. s.l.: Lund University Press.

  44. Hickey, R. (2000). Slope angle and slope length solutions for GIS. Cartography,29, 1–8.

  45. Hurni, H. (1985). Soil conservation manual for Ethiopia.

  46. ICONA, (1988). Agresividad de la lluvia en España. Madrid, España, Servicio de Publicaciones del Ministerio de Agricultura, Pesca y Alimentación (p. 39).

  47. Irvem, A., Topalog ˘lu, F., & Uygur, V. (2007). Estimating spatial distribution of soil loss over Seyhan River Basin in Turkey. Journal of Hydrology,336, 30–37.

  48. Joshi, V., Susware, N., & Sinha, D. (2016). Estimating soil loss from a watershed in Western Deccan, India, using Revised Universal Soil Loss Equation. Landscape & Environment,10(1), 13–25.

  49. Kalambukattu, J., & Kumar, S. (2017). Modelling soil erosion risk in a mountainous watershed of Mid-Himalaya by integrating RUSLE model with GIS. Eurasian Journal of Soil Science,6(2), 92–105.

  50. Kamuju, N. (2015). A study on estimation and comparison of average annual soil erosion with different slope length [L] and Steepness factors[S] by RUSLE model using remote sensing and GIS technology. IJITR International Journal of Innovative Technology and Research,3(5), 2424–2431.

  51. Kamuju, N. (2016). spatial identification and classification of soil erosion prone zones using remote sensing & gis integrated ‘rusle’ model and ‘sateec gis system. International journal of engineering sciences & research technology,5(10), 676–686.

  52. Kartic, K. M., Annadurai, R., & Ravichandran, T. (2014). Assessment of soil erosion susceptibility in Kothagiri. International Journal of Scientific and Research Publications Taluk Using Revised Universal Soil Loss Equation (RUSLE) and Geo-Spatial Technology, 4(10), 1–13.

  53. KICT, (1992). The development of selection standard for calculation method of unit sediment yield in rivers. KICT 89-WR-113.

  54. Kim, S.-M., et al. (2012). Estimation of soil erosion and sediment yield from mine tailing dumps using GIS: a case study at the Samgwang mine, Korea. Geosystem Engineering,15(1), 2–9.

  55. Kumar, S., & Kushwaha, S. (2013). Modelling soil erosion risk based on RUSLE-3D using GIS in a Shivalik sub-watershed. Journal of Earth System Science,122(2), 389–398.

  56. Lee, G., & Lee, K. (2006). Scaling effect for estimating soil loss in the RUSLE model using remotely sensed geospatial data in Korea. Hydrology and Earth System Sciences,3, 135–157.

  57. Lema, B., et al. (2016). Use of the revised universal soil loss equation (RUSLE) for soil and nutrient loss estimation in long-used rainfed agricultural lands, North Ethiopia. Physical Geography,37(3–4), 276–290.

  58. Lopez-Vicente, M., Navas, A., & Mach´ın, J. (2008). Identifying erosive periods by using RUSLE factors in mountain fields of the Central Spanish Pyrenees. Hydrology and Earth System Sciences,12, 523–535.

  59. Loureiro, N., & Coutinho, M. (2001). A new procedure to estimate the RUSLE El30 index, based on monthly rainfall data and applied to the Algarve region, Portugal. Journal of Hydrology,250, 12–18.

  60. Lufafa, A., et al. (2003). Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based Universal Soil Loss model. Agricultural Systems,76, 883–894.

  61. Maria, K., Pantelis, S., & Filippos, V. (2009). Soil erosion prediction using the Revised Universal soil loss equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environmental Geology,57, 483–497.

  62. Markose, V. & Jayappa, K., (2016). Soil loss estimation and prioritization of sub-watersheds of Kali River basin, Karnataka, India, using RUSLE and GIS. Environmental Monitoring and Assessment.

  63. Markose, V., & Jayappa, K. (2016b). Soil loss estimation and prioritization of sub-watersheds of Kali River basin, Karnataka, India, using RUSLE and GIS. Environmental Monitoring and Assessment,188(4), 1–16.

  64. McCool, D., Brown, L., Foster, G., & Mutchler, L. (1987). Revised slope steepness factor for the Universal Soil Loss Equation. Transactions of the ASAE (American Society of Agricultural Engineers),30, 1387–1396.

  65. McFarlane, D., Delroy, N., & Van, S. V. (1991). Water erosion of potato land in Western Australia. Australian journal of soil and water conservation, 4(1), 33–40.

  66. Mcroberts, R., Nelson, M., & Wendt, D. (2002). Stratified estimation of forest area using satellite imagery, inventory data, and the kNearest Neighbors technique. Remote Sensing of Environment,82, 457–468.

  67. Mhangara, P., Kakembo, V., & Lim, K. (2012). Soil erosion risk assessment of the Keiskamma catchment, South Africa using GIS and remote sensing. Environmental Earth Sciences,65(7), 2087–2102.

  68. Millward, A. A., & Mersey, J. E. (1999). Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena,38, 109–129.

  69. Moore, I., & Burch, F. (1986). Physical basic of the length–slope factor in the Universal Soil Loss Equation. Soil Science Society of America Journal,50, 1294–1298.

  70. Morgan, R. P. C. (1986). Soil erosion and conservation. s.l.: Longman.

  71. Morgan, R. (1995). Soil Erosion and Conservation (2nd ed.). UK: Longman.

  72. Morgan, R., & Davidson, D. (1991). Soil Erosion and Conservation. UK: Longman Group.

  73. Mulengera, M., & Payton, R. (1999). Estimating the USLE-soil erodibility factor in developing tropical countries. Trop Agric (Trinidad),76(1), 17–22.

  74. Naqvi, H. R., Devi, L. M., & Siddiqui, M. A. (2012). Soil loss prediction and prioritization based on revised universal soil loss estimation (RUSLE) model using geospatial technique. International Journal of Environmental Protection,2(3), 39–43.

  75. Oliveira, J. A., Dominguez, J. M. L., Nearing, M. A., & Oliveira, P. T. S. (2015). A GIS-based procedure for automatically calculating soil loss from the universal soil loss equation: Gisus-m. American Society of Agricultural and Biological Engineers,31(6), 907–917.

  76. Onori, F., Bonis, P. D., & Grauso, S. (2006). Soil erosion prediction at the basin scale using the revised universal soil loss equation (RUSLE) in a catchment of Sicily (southern Italy). Environmental Geology,50, 1129–1140.

  77. Pal, S., & Shit, M. (2017). Application of RUSLE model for soil loss estimation of Jaipanda watershed, West Bengal. Spatial Information Research,25(3), 399–409.

  78. Parveen, R., & Kumar, U. (2012). Integrated approach of universal soil loss equation (USLE) and geographical information system (GIS) for soil loss risk assessment in Upper South Koel Basin, Jharkhand. Journal of Geographic Information System,4, 588–596.

  79. Parysow, P., Wang, G., Gertner, G., & Anderson, A. (2003). Spatial uncertainty analysis for mapping soil erodibility based on joint sequential simulation. CATENA,53, 65–78.

  80. Prasannakumar, V., Shiny, R., Geetha, N., & Vijith, H. (2011). Spatial prediction of soil erosion risk by remote sensing, GIS and RUSLE approach: a case study of Siruvani river watershed in Attapady valley, Kerala, India. Environmental Earth Sciences,64, 965–972.

  81. Rahaman, S., Aruchamy, S., Jegankumar, R., & Ajeez, S. (2015). Estimation of annual average soil loss, based on RUSLE model in Kallar watershed, Bhavani basin, Tamil Nadu, India. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-2/W2, 207–214.

  82. Ramu, M., & Mahalingam, B. (2015). Quantification of soil erosion by water using GIS and remote sensing techniques: A study of Pandavapura Taluk, Mandya district, Karnataka, India. ARPN Journal of Earth Sciences,4(2), 103–110.

  83. Ranzi, R., Le, T. H., & Rulli, M. C. (2012). A RUSLE approach to model suspended sediment load in the Lo river (Vietnam): Effects of reservoirs and land use changes. Journal of Hydrology,422–423, 17–29.

  84. Rao, Y., (1981). Evaluation of cropping management factor in universal soil loss equation under natural rainfall condition of Kharagpur, India. Bangkok, Proceedings of the Southeast Asian Regional Symposium on Problems of Soil Erosion and Sedimentation, Asian Institute of Technology (AIT), (p. 241–254).

  85. Renard, K., Foster, G., Weesies, G. & McCool, (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation RUSLE. Handbook No. 703. US Department of Agriculture, (pp. 404).

  86. Renard, K., & Freimund, J. (1994). Using monthly precipitation data to estimate the R-factor in the RUSLE. Journal of Hydrology,157, 287–306.

  87. Römkens, M., Prasad, S., & Poesen, J. (1986). Soil erodibility and properties (pp. 492–504). s.n.: Hamburg.

  88. Roose, E., (1975). Érosion et ruissellement en afrique de l’ouest vingt années de mesures en petites parcelles expérimentales. cyclo: orstom.

  89. Roose, E., (1996). Land Husbandry-Components and strategy, s.l.: FAO Corporate Document Repository 70 FAO Soil Bulletin ISBN 92-5-103451-6. Chapter 5.

  90. Rosewell, C. (1993). Soilloss—A program to assist in the selection of the management practices to reduce erosion (2nd ed.). s.l.: Soil Conservation Service of New South Wales.

  91. Rozos, D., Skilodimou, H. D., Loupasakis, C., & Bathrellos, G. D. (2013). Application of the revised universal soil loss equation model on landslide prevention. An example from N. Euboea (Evia) Island, Greece. Environmental Earth Sciences,70, 3255–3266.

  92. Samanta, R., Bhunia, G., & Shit, P. (2016). Spatial modelling of soil erosion susceptibility mapping in lower basin of Subarnarekha river (India) based on geospatial techniques. Modeling Earth Systems and Environment, 2(99), 1–13.

  93. Santra, P., Goyal, R., Tewari, J., & Roy, M. (2014). Assessment of potential soil loss rate by wind and water erosion in Jodhpur region of western Rajasthan. India: Global Soil Map.

  94. Schwab, G. O., Fangmeier, D. D. & Elliot, W. J., (1994). Soil and Water Conservation Engineering. fourth ed. s.l.:s.n.

  95. Schwab, G., Frevert, R., & Edminster, T. (1981). Soil water conservation engineering (3rd ed.). New York: Wiley.

  96. Secretaria de Agricultura y Recursos Hidraulicos, (1991). Manual de Prediccion de Peridas de Suelo por Erosion, Colegio de Postgraduados, Guadalajara, 115 pp: s.n.

  97. Sewnet, G. H. (2016). USLE and SDR Model Based Sediment Yield Assessment in a GIS and Remote Sensing Environment; A Case Study of Koga Watershed, Upper Blue Nile Basin. Ethiopia. Hydrology Current Research,7(2), 1–10.

  98. Sharpley, A., & Williams, J. (1990). EPIC-erosion/productivity impact calculator: 1. model documentation (p. 1768). Washington: US Department of Agriculture Technical Bulletin No.

  99. Shi, Z. H., Cai, C. F., Ding, S. W., Wang, T. W., & Chow, T. L. (2004). Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in the Three Gorge Area of China. CATENA,55, 33–48.

  100. Shinde, V., Tiwari, K., & Singh, M. (2010). Prioritization of micro watersheds on the basis of soil erosion hazard using remote sensing and geographic information system. International Journal of Water Resources and Environmental Engineering,2(3), 130–136.

  101. Shit, P., Nandi, A. & Bhunia, G. (2015). Soil erosion risk mapping using RUSLE model on jhargram sub-division at West Bengal in India. Modeling Earth Systems and Environment.

  102. Sigalos, G., Loukaidi, V., Dasaklis, S. & Alexouli-Livaditi, A., (2010). Assessment of the quantity of the material transported downstream of Sperchios river, central Greece, Patras: Bulletin of the Geological Society of Greece, 2010, Proceedings of the 12th International Congress.

  103. Simms, A. D., Woodroffe, C. D. & Jones, B. G. (2003). Application of RUSLE for erosion management in a coastal catchment, Southern NSW. International Congress on Modelling and Simulation, July, Volume 2, (pp. 678–683).

  104. Singh, G. (1981). Soil loss and pre-diction research in India. Dehra Dun: Central Soil and Water Conservation Research Training Institute.

  105. Sorrentino, G. (2001). Indagine regionale sulla stima dell’aggressività della pioggia nello studio dell’erosione idrica (p. 222). Cosenza: Thesis, Università degli Studi della Calabria, Facoltà di Ingegneria.

  106. Swarnkar, S., Malini, A., Tripathi, S., & Sinha, R. (2017). Assessment of uncertainties in soil erosion and sediment yield estiamtes at ungauged basins: an application to the Garra River basin. India. Hydrology and Earth System Sciences, 22(4), 2471–2485.

  107. Terranova, O., Antronico, L., Coscarelli, R., & Iaquinta, P. (2009). Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy). Geomorphology,112, 228–245.

  108. Tew, K. (1999). Production of Malaysian soil erodibility nomograph in relation to soil erosion issues. 27 ed. Jalan SS 14/2D, 47500 Subang Jaya, Selangor DarulEhsan, Malaysia: VT SoilErosion Research & Consultancy.

  109. Tirkey, A. S., Pandey, A., & Nathawat, M. (2013). Use of satellite data, GIS and RUSLE for estimation of average annual soil loss in daltonganj watershed of Jharkhand (India). Journal of Remote Sensing Technology,1(1), 20–30.

  110. Torri, D., Poesen, J., & Borselli, L. (1997). Predictability and uncertainty of the soil erodibility factor using a global dataset. CATENA,31, 1–22.

  111. USDA, (1951). Soil survey manual. In Soil Conservation Service, Soil Survey Staff, U.S. Dept. of Agricultural handbook 18. (p. 503). Washington D.C., USA: U.S. Govt. Print Office.

  112. USDA-SCS. (1972). ‘Hydrology’ in SCS national engineering handbook, section 4. Washington DC: US Department of Agriculture.

  113. Van, R. R., Hamilton, M., & Hickey, R. (2001). Estimating the LS Factor for RUSLE through iterative slope length processing of digital elevation data within ArcInfo Grid. Cartography,30(1), 27–35.

  114. Van, D. K. J., Jones, R., & Montanarella, L. (2000). Soil erosion risk assessment in Europe. Luxembourg: Office for Official Publications of the European Communities.

  115. Vezina, K., Bonn, F., & Pham, V. (2006). Agricultural land-use patterns and soil erosion vulnerability of watershed units in Vietnam’s northern highlands. Landscape Ecology,21(8), 1311–1325.

  116. Vinay, M., Ramu & Mahalingam, B., (2015). Quantification of soil erosion by water using GIS and remote sensing techniques: A study of Pandavapura Taluk, Mandya District, Karnataka. India. ARPN Journal of Earth Sciences, 4(2), 103–110.

  117. Wener, C. (1981). Soil conservation in Kenya. Nairobi: Ministry of Agriculture, Soil Conservation Extension Unit.

  118. Wischmeier, W., & Smith, D. (1957). Factors affecting sheet and rill erosion. Transactions. American Geophysical Union,38(6), 889–896.

  119. Wischmeier, W. & Smith, D., 1978. Predicting rainfall erosion losses—A guide to conservation planning. Agriculture Handbook No.537, pp. 3–4.

  120. Wischmeier, W. & Smith, D., (1978). Predicting rainfall erosion lossesA guide to conservation planning. s.l.:USDA Agricultural Handbook No. 537.

  121. Xu, L., Xu, X., & Meng, X. (2013). Risk assessment of soil erosion in different rainfall scenarios by RUSLE model coupled with information diffusion model: A case study of Bohai Rim, China. CATENA,100, 74–82.

  122. Xu, L., et al. (2007). Simple method of estimating rainfall erosivity under different rainfall amount of Beijing. Research of Soil and Water Conservation,6, 398–402.

  123. Yang, Y. & Shi, D., (1994). Study on Soil Erosion in the Three Gorge Area of the Changjiang River.

  124. Yu, B., & Rosewell, C. J. (1998). Rainfall erosivity and its estimation for Australia’s tropics. Australian Journal of Soil Research,36, 143–165.

  125. Yue-Qing, X., et al. (2008). Adapting the RUSLE and GIS to model soil erosion risk in a mountains karst watershed, Guizhou Province, China. Environmental Monitoring and Assessment,141, 275–286.

  126. Zarris, D., Vlastara, M., & Panagoulia, D. (2011). Sediment delivery assessment for a transboundary mediterranean catchment: The example of Nestos River Catchment. Water Resources Management,25, 3785–3803.

  127. Zhao, W., Fu, B., Chen, L. & Zhang, Q. (2004). Estimation of rainfall erosivity using rainfall amount: a case study in hilly and gully area of Loess Plateau in northern Shaanxi. Land Change and Eco-environmental Construction.

Download references

Author information

Correspondence to Santasmita Das Bhattacharya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosal, K., Das Bhattacharya, S. A Review of RUSLE Model. J Indian Soc Remote Sens (2020).

Download citation


  • RUSLE for soil erosion
  • Rainfall erosivity factor (R)
  • Soil erodibility factor (K)
  • Slope length and steepness factor (LS)
  • Cover management factor (C)
  • Conservation practice factor (P)