Advertisement

Journal of the Indian Society of Remote Sensing

, Volume 47, Issue 12, pp 2073–2084 | Cite as

Performance Evaluation of Three Satellites-Based Precipitation Data Sets Over Iran

  • Morteza MiriEmail author
  • Reyhaneh Masoudi
  • Tayeb Raziei
Research Article
  • 41 Downloads

Abstract

The present study aims to evaluate the performance of daily and monthly precipitation data relative to GPM-IMERG, TRMM_3B42 and PERSIANN satellite-based precipitation estimations against historical data for the period 2014–2017 as observed at 70 synoptic stations distributed over Iran. The coefficient of determination (R-squared), root mean square error and the Nash–Sutcliffe model efficiency coefficient were used to evaluate the performance of the used data sets against observed precipitation records at the considered stations. The statistics showed that the considered data sets are generally less successful in estimating daily precipitation at nationwide as the estimation errors were found high at almost all the studied stations. The errors of daily precipitation estimation of GPM-IMERG, TRMM_3B42 and PERSIANN-CDR data sets showed that although there is a considerable similarity between the estimated precipitation by the three data sets, especially between the TRMM_3B42 and GPM-IMERG, the accuracy of GPM-IMERG daily precipitation over Iran is higher than that of TRMM_3B42 and PERSIANN-CDR. The highest R2 value for GPM-IMERG, TRMM_3B42 and PERSIANN-CDR remotely sensed daily precipitation is equal to 0.6, 0.46, and 0.37, respectively. Similarly, on the monthly time scale, the GPM-IMERG, with an average R2 value of 0.83 over the country, performs better than the other two data sets. The TRMM_3B43 with mean nationwide R2 = 0.80 also showed comparative performance with GPM-IMERG, but the PERSIANN-CDR data set with an average R2 value of 0.4 over the stations is not as accurate as the GPM-IMERG and TRMM_3B43.

Keywords

Remote sensing data GPM-IMERG TRMM_3B43 PERSIANN-CDR Performance statistics Precipitation 

Notes

References

  1. Alibakhshi, S. M., Faridhosseini, A., Davari, K., Alizadeh, A., & Munyka Gathecha, H. (2017). Statistical comparison of IMERG and TMPA 3B42V7 level-3 precipitation products of TRMM and GPM-IMERG (case study: Kashafrud Basin, Khorasan Razavi Province). Journal of Range and Watershed Management,69(4), 963–981. (in Persian).Google Scholar
  2. Alimohammad, S. H., Entekhabi, D., & McLaughlin, B. D. (2014). Evaluation of long-term SSM/I-based precipitation records over land. Journal of Hydrometeorology,15(5), 2012–2029.CrossRefGoogle Scholar
  3. Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., Dijk, A. I., et al. (2019). Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrology and Earth System Sciences,23, 207–224.  https://doi.org/10.5194/hess-23-207-2019.CrossRefGoogle Scholar
  4. Blacutt, L. A., Herdies, D. L., Gonçalves, L. G. G., Vila, D. A., & Andrade, M. (2015). Precipitation comparison for the CFSR, MERRA, TRMM3B42 and combined scheme datasets in Bolivia. Atmospheric Research,163, 117–131.CrossRefGoogle Scholar
  5. Collischonn, B., Collischonn, W., & Tucci, C. E. (2008). Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. Journal of Hydrology,360(1–4), 207–216.CrossRefGoogle Scholar
  6. Dezfooli, D., Hosseini-Moghari, S. M., & Ebrahimi, K. (2016). Comparison of TRMM-3B42 V7 and PERSIANN satellites precipitation data with ground-based data (case study: Gorganrood Basin, Iran). Water and Soil Science,20(76), 85–98. (in Persian).CrossRefGoogle Scholar
  7. Erfanian, M., Kazempour, S., & Heidari, H. (2016). Calibration of TRMM satellite 3B42 and 3B43 rainfall data in climatic zones of Iran. Physical Geography,48(2), 287–303. (in Persian).Google Scholar
  8. Fang, J., Yang, W., Luan, Y., Du, J., Lin, A., & Zhao, L. (2019). Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmospheric Research.  https://doi.org/10.1016/j.atmosres.2019.03.00.CrossRefGoogle Scholar
  9. Feidas, H. (2010). Validation of satellite rainfall products over Greece. Theoretical and Applied Climatology,99, 193–216.CrossRefGoogle Scholar
  10. Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., et al. (2015). The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Scientific Data,12, 3.  https://doi.org/10.1038/sdata.2015.66.CrossRefGoogle Scholar
  11. Gairola, R. M., Prakash, S., & Pal, P. K. (2015). Improved rainfall estimation over the Indian monsoon region by synergistic use of Kalpana-1 and rain gauge data. Atmósfera,28, 51–61.CrossRefGoogle Scholar
  12. Gebregiorgis, A. S., Kirstetter, P. E., Hong, Y. E., Gourley, J. J., Huffman, G. J., Petersen, W. A., et al. (2018). To what extent is the Day 1 GPM-IMERG IMERG satellite precipitation estimate improved as compared to TRMM TMPA-RT? Journal of Geophysical Research: Atmospheres,123, 1694–1707.Google Scholar
  13. Hong, Y., Hsu, K. L., Moradkhani, H., & Sorooshian, S. (2006). Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resources Research.  https://doi.org/10.1029/2005WR004398.CrossRefGoogle Scholar
  14. Hou, A. Y., Kakar, R. K., Neec, K. S., Azarbarzin, A. A., Kumerrow, C. D., Kojima, M., et al. (2014). The global precipitation measurement mission. Weather, Climate, and Society,95, 701–722.Google Scholar
  15. Huffman, G. J. (2018). The transition in multi-satellite products from TRMM to GPM (TMPA to IMERG). TRMM Website. https://pmm.nasa.gov/TRMM.
  16. Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., & Xie, P. (2015). NASA global precipitation measurement (GPM-IMERG) integrated multi-satellite retrievals for GPM-IMERG (IMERG). Algorithm Theoretical Basis Doc Version 4.5. https://storm.pps.eosdis.nasa.gov/storm/IMERG_ATBD_V4.pdf.
  17. Jiang, S. H., Zhou, M., Ren, L., Cheng, X. R., & Zhang, P. J. (2016). Evaluation of latest TMPA and CMORPH satellite precipitation products over Yellow River Basin. Water Science and Engineering,9(2), 87–96.CrossRefGoogle Scholar
  18. Joyce, R. J., Janowiak, J. E., Arkin, P. A., & Xie, P. (2004). CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology,5, 487–503.CrossRefGoogle Scholar
  19. Kummerow, C., Barnes, W., Kozu, T., Shiue, J., & Simpson, J. (1998). The tropical rainfall measuring mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology,15, 809–817.CrossRefGoogle Scholar
  20. Li, Z., Yang, D., & Hong, Y. (2013). Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. Journal of Hydrology,500(13), 157–169.CrossRefGoogle Scholar
  21. Lu, D., & Yong, B. (2018). Evaluation and hydrological utility of the latest GPM-IMERG IMERG V5 and GSMaP V7 precipitation products over the Tibetan Plateau. Remote Sensing,10, 2022.  https://doi.org/10.3390/rs10122022.CrossRefGoogle Scholar
  22. Miri, M. (2016). Analysis of relationship between climate change and Zagros forests decline (case study: Ilam Province). Ph.D. Thesis, Faculty of Geography, University of Tehran.Google Scholar
  23. Miri, M., Azizi, G. H., Khoshakhlagh, F., & Rahimi, M. (2017). Evaluation statistically of temperature and precipitation datasets with observed data in Iran. Iran-Water Management of Science Engineering,10(35), 39–50. (in Persian).Google Scholar
  24. Miri, M., Raziei, T., & Rahimi, M. (2016). Evaluation and statistically comparison of TRMM and GPCC datasets with observed precipitation in Iran. Journal of the Earth and Space Physics,42(3), 657–672. (in Persian).Google Scholar
  25. Mishra, A. K., Gairola, R. M., Varma, A. K., & Agarwal, V. K. (2011). Improved rainfall estimation over the Indian region using satellite infrared technique. Advances in Space Research, 48, 49–55.CrossRefGoogle Scholar
  26. Moriasi, D. N., Arnold, J. G., Van, M. W., Liew, R. L., Bingner, R., Harmel, R. D., et al. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE,50(3), 885–900.CrossRefGoogle Scholar
  27. Ning, S., Wang, J., Jin, J., & Ishidaira, H. (2016). Assessment of the latest GPM-IMERG-Era high-resolution satellite precipitation products by comparison with observation gauge data over the Chinese Mainland. Water.  https://doi.org/10.3390/w8110481.CrossRefGoogle Scholar
  28. Ochoa, A., Pineda, L., Crespo, P., & Willems, P. (2014). Evaluation of TRMM 3B42 precipitation estimates and WRF retrospective precipitation simulation over the Pacific-Andean region of Ecuador and Peru. Hydrology and Earth System Sciences,18, 3179–3193.CrossRefGoogle Scholar
  29. Oliveira, R., Maggioni, V., Vila, D., & Morales, C. (2016). Characteristics and diurnal cycle of GPM-IMERG rainfall estimates over the central Amazon region. Remote Sensing,8(7), 544.  https://doi.org/10.3390/rs8070544.CrossRefGoogle Scholar
  30. Porcu, F., Milani, L., & Petracca, M. (2014). On the uncertainties in validating satellite instantaneous rainfall estimates with raingauge operational network. Atmospheric Research,144, 73–81.CrossRefGoogle Scholar
  31. Prakash, S., Mitra, A. K., AghaKouchak, A., Liu, Z., Norouzi, H. R., & Pai, D. S. (2018). A preliminary assessment of GPM-IMERG-based multi-satellite precipitation estimates over a monsoon dominated region. Journal of Hydrology,556, 865–876.CrossRefGoogle Scholar
  32. Qi, W., Zhang, C., Fu, G., Sweetapple, C., & Zhou, H. (2016). Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations. Hydrology and Earth System Sciences,20, 903–920.CrossRefGoogle Scholar
  33. Raziei, T., Daryabari, J., Bordi, I., Modarres, R., & Pereira, L. S. (2014). Spatial patterns and temporal trends of daily precipitation indices in Iran. Climate Change,124(1–2), 239–253.CrossRefGoogle Scholar
  34. Raziei, T., & Sotoudeh, F. (2017). Investigation of the accuracy of the European Center for Medium Range Weather Forecast (ECMWF) in forecasting observed precipitation in different climates of Iran. Earth and Space Physics,43(1), 133–147. (in Persian).Google Scholar
  35. Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., et al. (2004). The global land data assimilation system. Bulletin of the American Meteorological Society,85(3), 381–394.CrossRefGoogle Scholar
  36. Satgé, F., Xavier, A., Zolá, R. P., Hussain, Y., Timouk, F., Garnier, J., et al. (2017). Comparative assessments of the latest GPM-IMERG mission’s spatially enhanced satellite rainfall products over the main Bolivian watersheds. Remote Sensing,9(4), 369.  https://doi.org/10.3390/rs9040369.CrossRefGoogle Scholar
  37. Seyyedi, H. (2010). Comparing satellite derived rainfall with ground based radar for North-Western Europe. Thesis for the degree of Master, International Institute for Geo-Information Science and Earth Observation, The Netherlands.Google Scholar
  38. Sharifi, E., Steinacker, R., & Saghafian, B. (2016). Assessment of GPM-IMERG–IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sensing,8(2), 135.  https://doi.org/10.3390/rs8020135.CrossRefGoogle Scholar
  39. Shirvani, A., & Fakharzadeh Shirazi, E. (2014). Comparison of ground-based observations of precipitation with TRMM satellite estimations in Fars province. Agricultural Meteorology,2(2), 1–15. (in Persian).Google Scholar
  40. Skok, G., Zagar, N., Honzak, L., Zabkar, R., Rakovec, J., & Ceglar, A. (2016). Precipitation intercomparison of a set of satellite and raingauge-derived datasets, ERA Interim reanalysis, and a single WRF regional climate simulation over Europe and the North Atlantic. Theoretical and Applied Climatology,123(1–2), 217–232.CrossRefGoogle Scholar
  41. Sorooshian, S., Gao, X., Hsu, K., Maddox, R. A., Hong, Y., Gupta, H. V., et al. (2002). Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information. Journal of Climate,15, 983–1001.CrossRefGoogle Scholar
  42. Sorooshian, S., Hsu, K. L., Gao, X., Gupta, H. V., Imam, B., & Braithwate, D. (2000). Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society,81, 2035–2046.CrossRefGoogle Scholar
  43. Su, F. G., Hong, Y., & Lettenmaier, D. P. (2008). Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. Journal of Hydrology,9, 622–640.Google Scholar
  44. Tan, M. L., & Santo, H. (2018). Comparison of GPM-IMERG IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmospheric Research,202, 63–76.CrossRefGoogle Scholar
  45. Tang, L., Tian, Y., Yan, F., & Habib, E. (2015). An improved procedure for the validation of satellite-based precipitation estimates. Atmospheric Research,163, 61–73.CrossRefGoogle Scholar
  46. Ushio, T., Sasashige, K., Kubota, T., Shige, S., Okamoto, K., Aonashi, K., et al. (2009). Kalman filter approach to the global satellite mapping of precipitation (GSMaP) from combined passive microwave and infrared radiometric data. Journal of the Meteorological Society of Japan,87A, 137–151.CrossRefGoogle Scholar
  47. Wei, G., Lu, H., Crow, W. T., Zhu, H., Wang, J., & Su, J. (2017). Evaluation of satellite-based precipitation products from IMERG V04A and V03D, CMORPH and TMPA with gauged rainfall in three climatologic zones in China. Remote Sensing,10, 30.  https://doi.org/10.3390/rs10010030.CrossRefGoogle Scholar

Copyright information

© Indian Society of Remote Sensing 2019

Authors and Affiliations

  1. 1.Department of GeographyUniversity of TehranTehranIran
  2. 2.Department of Reclamation of Arid and Mountainous Zones Regions, Faculty of Natural ResourcesUniversity of TehranTehranIran
  3. 3.Soil Conservation and Watershed Management Research InstituteTehranIran

Personalised recommendations