Advertisement

Journal of the Indian Society of Remote Sensing

, Volume 47, Issue 12, pp 2097–2111 | Cite as

Analysis of Parabolic Dune Morphometry and Its Migration in Thar Desert Area, India, using High-Resolution Satellite Data and Temporal DEM

  • B. K. BhadraEmail author
  • Sushilkumar B. Rehpade
  • Hansraj Meena
  • S. Srinivasa Rao
Research Article
  • 83 Downloads

Abstract

Thar Desert region is mainly comprised of sand dunes and sand sheets which are distributed in more than 80 per cent geographical area of western Rajasthan. Among the different types of sand dunes, nearly 50 per cent area of western Rajasthan is covered by parabolic dunes. However, morphodynamics of parabolic dunes in the Thar Desert is not fully understood. For this purpose, high-resolution satellite data of IRS RS2 LISS-IV (5.8 m resolution) and Cartosat-1 DEM (10 m resolution) have been used for delineation of parabolic dunes with the derivation of morphometric parameters (dune length, dune area, volume of sand accumulation and dune height) in western Rajasthan. Scatter plots of these morphometric parameters show a linear relationship with correlation coefficient (0.59–0.80). Interpolated maps show an increased rate of wind speed during 1980–2014. Although several measures have been taken for sand dune stabilisation, differential sand migration has been estimated for selected parabolic dunes using temporal DEMs (SRTM DEM of 2000 and Carto DEM of 2009). The analysis shows average dune shifting of 7.11 m/year in Barmer, 5.15 m/year in Jaisalmer and 3.51 m/year in Bikaner districts of western Rajasthan in the Thar Desert area.

Keywords

Satellite data Sand dune Morphometric analysis Sand migration Thar Desert India 

Notes

Acknowledgements

Authors are grateful to the Director, National Remote Sensing Centre (NRSC), Hyderabad, and the Chief General Manager, Regional Centres/NRSC, Hyderabad, for their inspiration to carry out the present work. Fruitful discussion and field support by Dr. P. C. Moharana, Principal Scientist, CAZRI, Jodhpur, and Ritwik Majumdar, Scientist, NRSC, Hyderabad, are duly acknowledged.

References

  1. Bogle, R., Redsteer, M. H., & Vogel, J. (2015). Field measurement and analysis of climatic factors affecting dune mobility near Grand Falls on the Navajo Nation, southwestern United States. Geomorphology,228, 41–51.CrossRefGoogle Scholar
  2. Bogle, R. C., Vogel, J., Velasco, M., & Redsteer, M. H. (2010). Sand Dune Migration Monitoring on the Navajo Nation, South-western United States. http://sgst.wr.usgs.gov/dunes/dune-migration-measures. Accessed 2 June 2017.
  3. Bourke, M. C., Ewing, R. C., Finnegan, D., & McGowan, H. A. (2009). Sand dune movement in the Victoria Valley, Antarctica. Journal of Geomorphology,109, 148–160.  https://doi.org/10.1016/j.geomorph.2009.02.028.CrossRefGoogle Scholar
  4. Bristow, C. S., Augustinus, P., Rhodes, E. J., Wallis, I. C., & Jol, H. M. (2011). Is climate change affecting rates of dune migration in Antarctica? The Geological Society of America,39, 831–834.Google Scholar
  5. Bristow, C. S., Lancaster, N., & Duller, G. A. T. (2005). Combining ground penetrating radar surveys and optical dating to determine dune migration in Namibia. Journal of Geological Society, London,162, 315–321.CrossRefGoogle Scholar
  6. Dhir, R. P., Rajaguru, S. N., & Singhvi, A. K. (1994). Desert Quaternary formations and their morphostratigraphy: Implications for the evolutionary history of the Thar. Journal Geological Society of India,43, 435–447.Google Scholar
  7. Dhir, R. P., & Singhvi, A. K. (2012). The Thar Desert and its antiquity. Current Science,102(6), 1–7.Google Scholar
  8. Dhir, R. P., Tandon, S. K., Singhvi, A. K., Kar, A., & Sareen, B. K. (2009). Soil profile modification, genesis, chronology and palaeoenvironmental interpretations from paleosols in a multi-episode aeolian section in western Rajasthan. Journal of the Indian Society of Soil Science,57(3), 225–236.Google Scholar
  9. Dong, Z., Wang, X., & Chen, G. (2000). Monitoring sand dune advance in the Taklimakan Desert. Geomorphology,35(3), 219–231.  https://doi.org/10.1016/S0169-555X(00)00039-8.CrossRefGoogle Scholar
  10. Els, A., Merlo, S., & Knight, J. (2015). Comparison of two satellite imaging platforms for evaluating sand dune migration in the Ubari sand sea (Libyan Fazzan). The international archives of the photogrammetry, remote sensing and spatial information sciences, Volume XL-7/W3, 2015. In 36th international symposium on remote sensing of environment, 11–15 May 2015, Berlin, Germany (pp. 1375–1380).  https://doi.org/10.5194/isprsarchives-xl-7-w3-1375-2015.CrossRefGoogle Scholar
  11. Enzel, Y., Ely, L. L., Mishra, S., Ramesh, R., Amit, R., Lazar, B., et al. (1999). High-resolution Holocene environment changes in the Thar Desert, northwestern India. Current Science,284, 125–128.Google Scholar
  12. Ghadiry, M., & Koch, B. (2010). Developing a monitoring system for sand dunes migration in Dakhla Oasis, Western Desert, Egypt. Remote Sensing for Science, Education and Natural and Cultural Heritage. Conference Paper, May 2010. https://www.researchgate.net/publication/260960585. Accessed 10 Jan 2019.
  13. Ghadiry, M., Shalaby, A., & Koch, B. (2012). A new GIS-based model for automated extraction of Sand Dune encroachment case study: Dakhla Oases, western desert of Egypt. Egyptian Journal of Remote Sensing and Space Science,15(1), 53–65.  https://doi.org/10.1016/j.ejrs.2012.04.001.CrossRefGoogle Scholar
  14. Ghose, B., Singh, S., & Kar, A. (1977). Desertification around the Thar—A geomorphological interpretation. Annals of Arid Zone,16, 290–301.Google Scholar
  15. Goudie, A. (2011). Parabolic dunes: Distribution, form, morphology and change. Annals of Arid Zone,50(3&4), 1–7.Google Scholar
  16. Halsey, L. A., Catto, N. R., & Rutter, N. W. (2011). Sedimentology and development of parabolic. Canadian Journal of Earth Sciences.  https://doi.org/10.1139/e90-182.CrossRefGoogle Scholar
  17. Hugenholtz, C. H., Wolfe, S. A., & Moorman, B. J. (2008). Effects of sand supply on the morphodynamics and stratigraphy of active parabolic dunes, Bigstick Sand Hills, southwestern Saskatchewan. Canadian Journal of Earth Sciences,45, 321–335.  https://doi.org/10.1139/E08-001.CrossRefGoogle Scholar
  18. Juyal, N., Kar, A., Rajaguru, S. N., & Singhvi, A. K. (2003). Luminescence chronology of aeolian deposition during the late Quaternary on the southern margin of Thar Desert, India. Quaternary International,104, 87–98.CrossRefGoogle Scholar
  19. Kar, A. (1987). Origin and transformation of longitudinal sand dunes in the Indian desert. Zeitschrift fur Geomorphology,31, 311–337.Google Scholar
  20. Kar, A. (1990). The megabarchanoids of the Thar: Their environment, morphology and relationship with longitudinal dunes. Geographical Journal,156, 51–61.CrossRefGoogle Scholar
  21. Kar, A. (1993). Aeolian processes and bedforms in the Thar Desert. Journal of Arid Environments,25, 83–96.  https://doi.org/10.1006/jare.1993.1044.CrossRefGoogle Scholar
  22. Kar, A. (1994). Sand dunes and their mobility in Jaisalmer district. In K. R. Dikshit, V. S. Kale, & M. N. Kaul (Eds.), India: Geomorphological diversity (pp. 395–418). Jaipur: Rawat Publication.Google Scholar
  23. Kar, A. (1995). Geomorphology of arid western India. Memoir, Geological Society of India,32, 168–190.Google Scholar
  24. Kar, A. (1996). Morphology and evolution of sand dunes in the Thar Desert as key to sand control measures. Indian Journal of Geomorphology,1, 177–206.Google Scholar
  25. Kar, A. (2011). Quaternary geomorphic processes and landform development in the Thar Desert of Rajasthan. In S. Bandyopadhyay, et al. (Eds.), Landforms processes and environment management (pp. 223–254). Kolkata: ACB Publications.Google Scholar
  26. Kar, A., Felix, C., Rajaguru, S. N., & Singhvi, A. K. (1998). Late Holocene growth and mobility of a transverse dune in the Thar Desert. Journal of Arid Environments,38, 175–185.CrossRefGoogle Scholar
  27. Kar, A., Singhvi, A. K., Juyal, N., & Rajaguru, S. N. (2004). Late Quaternary aeolian sedimentation history of Thar Desert. In H. S. Sharma, S. Singh, & S. De (Eds.), Geomorphology and environment (pp. 105–122). Kolkata: ACB Publications.Google Scholar
  28. Kar, A., Singhvi, A. K., Rajaguru, S. N., Juyal, N., Thomas, J. V., Banerjee, D., et al. (2001). Reconstruction of the late Quaternary environment of the lower Luni plains, Thar Desert, India. Journal of Quaternary Science,16(1), 61–68.CrossRefGoogle Scholar
  29. Katalin, G., & Tímea, K. (2013). Dune hierarchy and morphometric classes of the parabolic sand dune association of Inner Somogy, Hungary. Studia Geomorphologica Carpatho Balcanica,47(1), 31–48.  https://doi.org/10.2478/sgcb20130003.CrossRefGoogle Scholar
  30. Kaul, R. N. (1996). Sand dune stabilization in the Thar Desert of India: A synthesis. Annals of Arid Zone,35(3), 225–240.Google Scholar
  31. Madole, R. F., Romig, J. H., Aleinikoff, J. N., VanSistine, D. P., & Yacob, E. Y. (2008). The origin and age of the Great Sand Dunes, Colorado. Geomorphology,9, 99–119.CrossRefGoogle Scholar
  32. Marin, L., Forman, S. L., Valdez, A., & Bunch, F. (2005). Twentieth century dune migration at the Great Sand Dunes National Park and Preserve, Colorado, relation to drought variability. Geomorphology,70, 163–183.CrossRefGoogle Scholar
  33. Moharana, P. C. (2011). Geomorphic assessment and mapping of gullied landscapes in the eastern margin of Thar Desert using GIS and remote sensing. Indian Cartographer,31, 176–181.Google Scholar
  34. Moharana, P. C. (2012). Types, distribution and morphology of aeolian bedforms in canal-irrigated region of arid western Rajasthan. Journal of Indian Geomorphology,1, 1–7.Google Scholar
  35. Moharana, P. C., & Kar, A. (2010). Quantitative measurement of arid fluvial processes: Results from an upland catchment in Thar Desert. Journal Geological Society of India,76, 86–92.CrossRefGoogle Scholar
  36. Moharana, P. C., Santra, P., Singh, D. V., Kumar, S., Goyal, R. K., Machiwal, D., et al. (2016). ICAR-Central Arid Zone Research Institute, Jodhpur: Erosion processes and desertification in the Thar Desert of India. Proceeding of Indian National Science Academy,82(3), 1117–1140.  https://doi.org/10.16943/ptinsa2016/48507.CrossRefGoogle Scholar
  37. NRSC. (2010). Manual for National Geomorphological and Lineament Mapping (NGLM) on 1:50,000 scale. National Remote Sensing Centre, Hyderabad, 1–149. http://bhuvan.nrsc.gov.in/gis/thematic/index.php. Accessed 30 Mar 2010.
  38. Potter, C., & Weigand, J. (2016). Analysis of Desert Sand Dune migration patterns from landsat image time series for the Southern California Desert. Journal of Remote Sensing & GIS,5, 164.  https://doi.org/10.4172/24694134.1000164.CrossRefGoogle Scholar
  39. Ramakrishna, Y. S., Kar, A., Rao, A. S., & Singh, R. S. (1994). Micro-climate and mobility of a barchan dune in the Thar Desert. Annals of Arid Zone,33, 203–214.Google Scholar
  40. Santalla, I. R., Garcia, M. J., Montes, I. M., Ortiz, D. G., Crespo, T. M., & Raventos, J. S. (2009). Internal structure of the aeolian sand dunes of El Fangar spit, Ebro Delta (Tarragona, Spain). Geomorphology,104(3), 238–252.  https://doi.org/10.1016/j.geomorph.2008.08.017.CrossRefGoogle Scholar
  41. Singhvi, A. K., Banerjee, D., Ramesh, R., Rajaguru, S. N., & Gogate, V. (1996). A luminescence method for dating ‘dirty’ pedogenic carbonates for paleo environmental reconstruction. Earth and Planetary Science Letters,139, 321–330.CrossRefGoogle Scholar
  42. Singhvi, A. K., Bhatt, N., Glennie, K. W., & Srivastava, P. (2012). India, Arabia and adjacent regions. In: S. E. Metcalfe & D. J. Nash (Eds.), Quaternary environmental change in the tropics (1st ed., pp. 151–206). Wiley.Google Scholar
  43. Singhvi, A. K., & Kar, A. (Eds.). (1992). Thar Desert in Rajasthan (pp. 1–191). Bangalore: Geological Society of India.Google Scholar
  44. Singhvi, A. K., & Kar, A. (2004). The aeolian sedimentation record of the Thar Desert. Proceedings of the Indian Academy of Sciences (Earth and Planetary Science),113(3), 371–401.Google Scholar
  45. Singhvi, A. K., & Kar, A. (2007). The history of Sand Dunes in the Thar Desert. ISG Newsletter,13(1), 4–15.Google Scholar
  46. Singhvi, A. K., Sharma, Y. P., & Agarwal, D. P. (1982). Thermo luminescence dating of sand dunes in Rajasthan. Nature,295, 313–316.CrossRefGoogle Scholar
  47. Singhvi, A. K., Williams, M. A. J., Rajaguru, S. N., Misra, V. N., Chawla, S., Stokes, S., et al. (2010). A ~ 200 ka record of climatic change and dune activity in the Thar Desert, India. Quaternary Science Reviews,29, 3095–3105.CrossRefGoogle Scholar
  48. Tsoar, H. (2001). Types of aeolian sand dunes and their formation. In: N. J. Balmforth & A. Provenzale (Eds.), Lecture notes in physics (LNP) (Vol. 582, pp. 403–429). Berlin, Heidelberg: Springer.Google Scholar
  49. Wadhawan, S. K., & Kumar, V. (1996). Subsurface Quaternary aeolian stratigraphy in the Ghaggar basin of Thar Desert, India. Journal of Arid Environments,32, 37–51.CrossRefGoogle Scholar
  50. Wasson, R. J., Rajaguru, S. N., Misra, V. N., Agarwal, D. P., Dhir, R. P., Singhvi, A. K., et al. (1983). Geomorphology, late Quaternary stratigraphy and palaeoclimatology of the Thar Dune field. Zeitschrift fur Geomorphologie, Supplement Band,45, 117–151.Google Scholar
  51. Xiao, J., Qu, J., Yao, Z., Pang, Y., Zhang, K. (2015). Morphology and formation mechanism of sand shadow dunes on the Qinghai-Tibet Plateau. Journal of Arid Land, 7(1), 10–26.  https://doi.org/10.1007/s40333-014-0074-9.CrossRefGoogle Scholar
  52. Yan, N., & Baas, A. C. W. (2015). Parabolic dunes and their transformations under environmental and climatic changes: Towards a conceptual framework for understanding and prediction. Global and Planetary Changes,124, 123–148.CrossRefGoogle Scholar
  53. Yao, Z. Y., Wang, T., Han, Z. W., Zhang, W. M., & Zhao, A. G. (2007). Migration of sand dunes on the northern Alxa Plateau, Inner Mongolia, China. Journal of Arid Environments,70, 80–93.  https://doi.org/10.1016/j.jaridenv.2006.12.012.CrossRefGoogle Scholar
  54. Zhiwei, X., Mason, J. A., Huayu, L., Shuangwen, Y., Yali, Z., Jiang, W., et al. (2017). Crescentic dune migration and stabilization: Implications for interpreting paleo-dune deposits as paleoenvironmental records. Journal of Geographical Sciences,27(11), 1341–1358.  https://doi.org/10.1007/s11442-017-1439-8.CrossRefGoogle Scholar

Copyright information

© Indian Society of Remote Sensing 2019

Authors and Affiliations

  • B. K. Bhadra
    • 1
    Email author
  • Sushilkumar B. Rehpade
    • 1
  • Hansraj Meena
    • 1
  • S. Srinivasa Rao
    • 1
  1. 1.Regional Remote Sensing Centre-West, NRSCJodhpurIndia

Personalised recommendations