Journal of the Indian Society of Remote Sensing

, Volume 47, Issue 12, pp 2129–2139 | Cite as

A Review on Recent Advances in Remote Sensing Image Retrieval Techniques

  • S. K. SudhaEmail author
  • S. Aji
Review Article


Due to the rapid advancements in the remote sensing (RS) imaging modalities, the scientific fraternity has been challenged to develop sophisticated methods for retrieving similar images from huge image archives. Developing efficient retrieval methods has become more challenging, as the quantity of RS image databases is growing fast in the spatial information domain. Even though numerous techniques have been developed for Remote Sensing Image Retrieval (RSIR) in the last decade, most of them are found to be less effective on a large volume of RS image databases. Several studies have been conducted to analyze the issues related to the challenges involved in the design of efficient and reliable retrieval techniques for an RSIR. A systematic study has been conducted on the existing RSIR methods, especially on the performance of the techniques with large datasets, and the findings are explained in this paper. The discussions and findings presented in this paper will give new insight, into the different RSIR techniques. The recommendations given at the end of the paper will help the new researchers in the RS domain to choose effective methodologies that can improve the performance of the RSIR system in different retrieval schemes.


Feature extraction Relevance feedback Active learning Similarity measure Deep learning 



  1. Aptoula, E. (2014). Remote sensing image retrieval with global morphological texture descriptors. IEEE Transactions on Geoscience and Remote Sensing,52(5), 3023–3034.CrossRefGoogle Scholar
  2. Blanchart, P., Ferecatu, M., Cui, S., & Datcu, M. (2014). Pattern retrieval in large image databases using multiscale coarse-to-fine cascaded active learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,7(4), 1127–1141.CrossRefGoogle Scholar
  3. Chaudhuri, B., Demir, B., Bruzzone, L., & Chaudhuri, S. (2016). Region-based retrieval of remote sensing images using an unsupervised graph-theoretic approach. IEEE Geoscience and Remote Sensing Letters,13(7), 987–991.CrossRefGoogle Scholar
  4. Dai, O. E., Demir, B., Sankur, B., & Bruzzone, L. (2018). A novel system for content-based retrieval of single and multi-label high-dimensional remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,11(7), 2473–2490.CrossRefGoogle Scholar
  5. Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2008). Image retrieval: ideas, influences, and trends of the new age. ACM Computing Surveys,40(2), 1–60.CrossRefGoogle Scholar
  6. Demir, B., & Bruzzone, L. (2014). A novel active learning method in relevance feedback for content-based remote sensing image retrieval. IEEE Transactions on Geoscience and Remote Sensing,53(5), 2323–2334.CrossRefGoogle Scholar
  7. Demir, B., & Bruzzone, L. (2015). Hashing-based scalable remote sensing image search and retrieval in large archives. IEEE Transactions on Geoscience and Remote Sensing,54(2), 892–904.CrossRefGoogle Scholar
  8. Duan, J., Ma, C., Liu, S. B., & Zhang, J. (2013). The remote sensing image retrieval based on multi-feature. In Proceedings of SPIE image and signal processing for remote sensing XIX, Vol. 8892.Google Scholar
  9. Ferecatu, M., & Boujemaa, N. (2007). Interactive remote-sensing image retrieval using active relevance feedback. IEEE Transactions on Geoscience and Remote Sensing,45(4), 818–826.CrossRefGoogle Scholar
  10. Grivei, A. C., Radoi, A., Vaduva, C., & Datcu, M. (2016). An active-learning approach to the query by example retrieval in remote sensing images. In International conference on communications (COMM) (pp. 377–380).Google Scholar
  11. Hu, F., Tong, X., Xia, G. S., & Zhang, L. (2017). Delving into deep representations for remote sensing image retrieval. In International conference on signal processing proceedings, ICSP (pp. 198–203)Google Scholar
  12. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., & Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on multimedia (pp. 675–678). ACMGoogle Scholar
  13. Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012) Imagenet Classification with Deep Convolutional Neural Networks. In NIPS’12 proceedings of the 25th international conference on neural information processing systems (pp. 1097–1105)Google Scholar
  14. Laban, N., ElSaban, M., Nasr, A., & Onsi, H. (2012). System refinement for content based satellite image retrieval. The Egyptian Journal of Remote Sensing and Space Sciences,15(1), 91–97.CrossRefGoogle Scholar
  15. Li, Y., & Bretschneider, T. (2006). Remote sensing image retrieval using a context-sensitive bayesian network with relevance feedback. In IEEE international symposium on geoscience and remote sensing. Google Scholar
  16. Li, J., & Narayanan, R. M. (2004). Integrated information mining and image retrieval in remote sensing. IEEE Transactions on Geoscience and Remote Sensing,42(3), 673–685.CrossRefGoogle Scholar
  17. Li, P., & Ren, P. (2017). Partial randomness hashing for large-scale remote sensing image retrieval. IEEE Geoscience and Remote Sensing Letters,14(3), 464–468.CrossRefGoogle Scholar
  18. Li, Y., Zhang, Y., Tao, C., & Zhu, H. (2016). Content-based high-resolution remote sensing image retrieval via unsupervised feature learning and collaborative affinity metric fusion. Remote Sensing, 8(9), 709.CrossRefGoogle Scholar
  19. Li, Y., Zhang, Y., Huang, X., Zhu, H., & Ma, J. (2018a). Large-scale remote sensing image retrieval by deep hashing neural networks. IEEE Transactions on Geoscience and Remote Sensing,56(2), 950–965.CrossRefGoogle Scholar
  20. Li, P., Zhang, X., Zhu, X., & Ren, P. (2018b). Online hashing for scalable remote sensing image retrieval. Remote Sensing,10(5), 709.CrossRefGoogle Scholar
  21. Jiao, L., Tang, X., Hou, B., & Wang, S. (2015). SAR images retrieval based on semantic classification and region-based similarity measure for earth observation. IEEE Selected Topics in Applied Earth Observations and Remote Sensing,8(8), 3876–3891.CrossRefGoogle Scholar
  22. Ma, C., Dai, Q., Liu, J., Liu, S., & Yang, J. (2014). An improved SVM model for relevance feedback in remote sensing image retrieval. International Journal of Digital Earth,7(9), 725–745.CrossRefGoogle Scholar
  23. Mitra, P., Shankar, B. U., & Pal, S. K. (2004). Segmentation of multispectral remote sensing images using active SVMs. Pattern Recognition Letters,25(9), 1067–1074.CrossRefGoogle Scholar
  24. Napoletano, P. (2017). Visual descriptors for content-based retrieval of remote-sensing images. International Journal of Remote Sensing,39(5), 1–34.Google Scholar
  25. Pang, S., Xue, J., Gao, Z., & Tian, Q. (2015). Image re-ranking with an alternating optimization. Neurocomputing,165, 423–432.CrossRefGoogle Scholar
  26. Peijun, D. U., Yunhao, C., Hong, T., & Tao, F. (2005). Study on content-based remote sensing image retrieval. In Proceedings, IEEE international geoscience, and remote sensing symposium, IGARSS ‘05 Google Scholar
  27. Rui, Y., Huang, T. S., Ortega, M., & Mehrotra, S. (1998). Relevance feedback: A power tool for interactive content-based image retrieval. IEEE Transactions on Circuits and Systems for Video Technology,8(5), 644–655.CrossRefGoogle Scholar
  28. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks,61, 85–117.CrossRefGoogle Scholar
  29. Shao, Z., Yang, K., & Zhou, W. (2018). A benchmark dataset for performance evaluation of multi-label remote sensing image retrieval, MDPI. Remote Sensing,10(8), 964.CrossRefGoogle Scholar
  30. Song, Q., Huang, R., & Wang, K. (2015). Remote sensing image retrieval based on attribute profiles. In International conference on computer science and mechanical automation, (pp. 231–234).Google Scholar
  31. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabonovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–9)Google Scholar
  32. Tang, X., & Jiao, L. (2017). Fusion similarity-based reranking for SAR image retrieval. IEEE Geoscience and Remote Sensing Letters,14(2), 242–246.CrossRefGoogle Scholar
  33. Tang, X., Jiao, L., Emery, W. J., Liu, F., & Zhang, D. (2017). Two-stage re-ranking for remote sensing image retrieval. IEEE Transactions on Geoscience and Remote Sensing,55(10), 5798–5817.CrossRefGoogle Scholar
  34. Tuia, D., Volpi, M., Copa, L., Kanevski, M., & Munoz, J. (2011). A survey of active learning algorithms for supervised remote sensing image classification. IEEE Journal of Selected Topics in Signal Processing,5(3), 606–617.CrossRefGoogle Scholar
  35. Wang, M., & Song, T. (2013). Remote sensing image retrieval by scene semantic matching. IEEE Transactions on Geoscience and Remote Sensing,51(5), 2874–2886.CrossRefGoogle Scholar
  36. Wang, Y., Zhang, L., Tong, X., Zhang, L., Zhang, Z., Liu, H., et al. (2016). A three-layered graph-based learning approach for remote sensing image retrieval. IEEE Transactions on Geoscience and Remote Sensing,54(10), 6020–6034.CrossRefGoogle Scholar
  37. Xia, G. S., Tong, X. Y., Hu, F., Zhong, Y., Datcu, M., Zhang, L. (2017). Exploiting deep features for remote sensing image retrieval: A systematic investigation. arXiv:1707.07321, 2 July 2017
  38. Yang, Y., & Newsam, S. (2010). Bag-of-visual-word and spatial extensions for land use classification. In: Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information system (pp. 270–279). ACMGoogle Scholar
  39. Yang, Y., & Newsam, S. (2013). Geographic image retrieval using local invariant features. IEEE Transactions on Geoscience and Remote Sensing,51(2), 818–832.CrossRefGoogle Scholar
  40. Ye, D., Li, Y., Tao, C., Xie, X., & Wang, X. (2017). Multiple feature hashing learning for large-scale remote sensing image retrieval. ISPRS International Journal of Geo-Information,6(11), 364.CrossRefGoogle Scholar
  41. Ye, F., Xiao, H., Zhao, X., Dong, M., Luo, W., & Min, W. (2018). Remote sensing image retrieval using convolutional neural network features and weighted distance. IEEE Geoscience and Remote Sensing Letters,15(2), 232–236.CrossRefGoogle Scholar
  42. Yue, J., Zhao, W., Mao, S., & Liu, H. (2015). Spectral-spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sensing Letters,6(6), 468–477.CrossRefGoogle Scholar
  43. Zhang, J., Geng, W., Liang, X., Li, J., Zhuo, L., & Zhou, Q. (2017a). Hyperspectral remote sensing image retrieval system using spectral and texture features. Applied Optics,56(16), 4785–4796.CrossRefGoogle Scholar
  44. Zhang, J., Zhou, Q., Zhuo, L., Geng, W., & Wang, S. (2017b). A CBIR system for hyperspectral remote sensing images using endmember extraction. International Journal of Pattern Recognition and Artificial Intelligence,31(4), 1752001.CrossRefGoogle Scholar
  45. Zhou, W., Newsam, S., Li, C., & Shao, Z. (2017). Learning low dimensional convolutional neural networks for high-resolution remote sensing image retrieval. Remote Sensing,9(5), 489.CrossRefGoogle Scholar
  46. Zhou, W., Shao, Z., Diao, C., & Cheng, Q. (2015). High-resolution remote-sensing imagery retrieval using sparse features by auto-encoder. Remote Sensing Letters,6(10), 775–783.CrossRefGoogle Scholar

Copyright information

© Indian Society of Remote Sensing 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of KeralaKariavattom, ThiruvananthapuramIndia

Personalised recommendations