Advertisement

Journal of the Indian Society of Remote Sensing

, Volume 47, Issue 10, pp 1727–1735 | Cite as

Modeling the Net Primary Productivity: A Study Case in the Brazilian Territory

  • Helizani Couto BazameEmail author
  • Daniel Althoff
  • Roberto Filgueiras
  • Maria Lúcia Calijuri
  • Julio Cesar de Oliveira
Research Article
  • 121 Downloads

Abstract

The net primary productivity is one of the main indicators of an ecosystem’s health. The objectives of the present study were to assess the performance of machine learning techniques in net primary productivity modeling and to assess regional trends for the Brazilian territory. Net primary production was modeled using evapotranspiration estimates, the normalized difference vegetation index, hypsometry and meteorological data. The models adopted for estimating net primary productivity were stepwise regression, Bayesian regularized neural network and Cubist regression. A linear trend model was applied pixel by pixel in order to verify a significant change in net primary productivity across the Brazilian territory. The Cubist model performed best among the evaluated models, with root-mean-squared error of 135.6 g C m−2 year−1 and R2 equal to 0.78. While assessing the net primary productivity time series, an increased trend was observed for the Brazilian Savannah biome, which may be attributed to the replacement of some Savannah formations and degraded grasslands to agriculture. The developed model has shown a great potential for filling the gap of spatial net primary productivity data in large scales.

Keywords

Environmental monitoring Machine learning Remote sensing Linear trend models 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.CrossRefGoogle Scholar
  2. Almeida, W. S., & Souza, N. M. (2008). Coari: petróleo e sustentabilidade–um exemplo Amazônico. Desenvolvimento e Meio Ambiente, 17.Google Scholar
  3. Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728.  https://doi.org/10.1127/0941-2948/2013/0507.CrossRefGoogle Scholar
  4. Araújo, M. A. R., & Coelho, R. M. P. (1998). Produção e consumo de carbono orgânico na comunidade planctônica da represa da Pampulha, Minas Gerais, Brasil. Revista Brasileira de Biologia, 58(3), 405–416.  https://doi.org/10.1590/S0034-71081998000300006.CrossRefGoogle Scholar
  5. Bao, G., Bao, Y., Qin, Z., Xin, X., Bao, Y., Bayarsaikan, S., et al. (2016). Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model. International Journal of Applied Earth Observation and Geoinformation, 46, 84–93.CrossRefGoogle Scholar
  6. Bragança, A. (2018). The economic consequences of the agricultural expansion in Matopiba. Revista Brasileira de Economia, 72(2), 161–185.CrossRefGoogle Scholar
  7. Brokamp, C., Jandarov, R., Rao, M. B., LeMasters, G., & Ryan, P. (2017). Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmospheric Environment, 151, 1–11.CrossRefGoogle Scholar
  8. Cao, M., Prince, S. D., Small, J., & Goetz, S. J. (2004). Remotely sensed interannual variations and trends in terrestrial net primary productivity 1981–2000. Ecosystems, 7(3), 233–242.CrossRefGoogle Scholar
  9. Cunha, A. P. M. A., Alvalá, R. C. S., & Oliveira, G. S. (2013). Impactos das mudanças de cobertura vegetal nos processos de superfície na região semiárida do Brasil. Revista Brasileira de Meteorologia, 28(2), 139–152.CrossRefGoogle Scholar
  10. Dalmago, G. A., da Cunha, G. R., Santi, A., Pires, J. L. F., & Schweig, E. (2008). Produtividade primária líquida do ambiente natural-indicador de sustentabilidade de sistemas de produção agrícola. Embrapa Trigo-Documentos (INFOTECA-E).Google Scholar
  11. Domingues, M. S., & Bermann, C. (2012). O arco de desflorestamento na Amazônia: da pecuária à soja. Ambiente & sociedade, 15(2), 1–22.CrossRefGoogle Scholar
  12. dos Santos, D. B., Silva, D. C. C., & Rodrigues, M. (2016). Instituições e enforcement na redução do desmatamento na Amazônia. Revista Teoria e Evidência Econômica.  https://doi.org/10.5335/rtee.v22i47.6831
  13. Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S., et al. (1996). An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10(4), 603–628.  https://doi.org/10.1029/96GB02692.CrossRefGoogle Scholar
  14. Galvíncio, J. D., Naue, C. R., Angelotti, F., & de Moura, M. S. B. (2011). Vitis vinifera spectral response to the increase of CO2. Journal of Hyperspectral Remote Sensing, 1(1), 1–18.CrossRefGoogle Scholar
  15. Gomes, L. C., Faria, R. M., de Souza, E., Veloso, G. V., Schaefer, C. E. G. R., & Filho, E. I. F. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340, 337–350.  https://doi.org/10.1016/j.geoderma.2019.01.007.CrossRefGoogle Scholar
  16. Guilherme, A. P., Mota, A. B. dos S., Mota, D. dos S., Machado, N. G., & Biudes, M. S. (2016). Uso de índice de vegetação para caracterizar a mudança no uso do solo em Coari-AM. Sociedade & Natureza, 28(2).Google Scholar
  17. IBGE - Instituto Brasileiro de Geografia e Estatística. (2011). Dados gerais do município. http://cidades.ibge.gov.br/painel/painel.php?codmun=130120. Accessed June 22, 2018
  18. Im, J., Lu, Z., Rhee, J., & Quackenbush, L. J. (2012). Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data. Remote Sensing of Environment, 117, 102–113.  https://doi.org/10.1016/j.rse.2011.06.024.CrossRefGoogle Scholar
  19. Liu, S., Kaire, M., Wood, E., Diallo, O., & Tieszen, L. L. (2004). Impacts of land use and climate change on carbon dynamics in south-central Senegal. Journal of Arid Environments, 59(3), 583–604.CrossRefGoogle Scholar
  20. MapBiomas. (2018). Projeto de Mapeamento Anual da Cobertura e Uso do Solo no Brasil [Annual Mapping Project for Land Cover and Use in Brazil]. MapBiomas v3.0. http://mapbiomas.org/map#coverage
  21. Massmann, C. (2015). Supporting M5 model trees with sensitivity information derived from conceptual hydrological models. Journal of Hydroinformatics, 17(6), 943–958.  https://doi.org/10.2166/hydro.2015.111.CrossRefGoogle Scholar
  22. Morais, Y. C. B., Araújo, M. S. B., Moura, M. S. B., Galvíncio, J. D., & Miranda, R. Q. (2017). Analysis of carbon sequestration in Caatinga areas of Pernambucano Semiarid. Revista Brasileira de Meteorologia, 32(4), 585–599.CrossRefGoogle Scholar
  23. Peixoto, A. R., & Costa, C. S. B. (2004). Produção primária líquida aérea de Spartina densiflora Brong. (Poaceae) no estuário da laguna dos Patos, Rio Grande do Sul, Brasil. Iheringia. Série Botânica., 59(1), 27–34.Google Scholar
  24. Pfaff, A., Robalino, J., Walker, R., Aldrich, S., Caldas, M., Reis, E., et al. (2007). Road investments, spatial spillovers, and deforestation in the Brazilian Amazon. Journal of Regional Science, 47(1), 109–123.  https://doi.org/10.1111/j.1467-9787.2007.00502.x.CrossRefGoogle Scholar
  25. Potter, C., Klooster, S., Huete, A., Genovese, V., Bustamante, M., Guimaraes Ferreira, L., et al. (2009). Terrestrial carbon sinks in the Brazilian Amazon and Cerrado region predicted from MODIS satellite data and ecosystem modeling. Biogeosciences, 6(6), 937–945.  https://doi.org/10.5194/bg-6-937-2009.CrossRefGoogle Scholar
  26. Quinlan, J. R. (1992). Learning with continuous classes. In 5th Australian joint conference on artificial intelligence (Vol. 92, pp. 343–348). Singapore.Google Scholar
  27. Silveira, M. C. (2013). Variabilidade na produção primária líquida em modelos de superfície para sítios sul-americanos (Master’s thesis). Santa Maria, RS: Federal University of Santa Maria.Google Scholar
  28. Sun, R., Chen, J. M., Zhu, Q., Zhou, Y., Liu, J., Li, J., et al. (2004). Spatial distribution of net primary productivity and evapotranspiration in Changbaishan Natural Reserve, China, using Landsat ETM + data. Canadian Journal of Remote Sensing, 30(5), 731–742.CrossRefGoogle Scholar
  29. Ticknor, J. L. (2013). A Bayesian regularized artificial neural network for stock market forecasting. Expert Systems with Applications, 40(14), 5501–5506.  https://doi.org/10.1016/j.eswa.2013.04.013.CrossRefGoogle Scholar
  30. Verrelst, J., Munõz, J., Alonso, L., Delegido, J., Rivera, J. P., Camps-Valls, G., et al. (2012). Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sensing of Environment, 118, 127–139.  https://doi.org/10.1016/j.rse.2011.11.002.CrossRefGoogle Scholar
  31. Wang, L., Kisi, O., Hu, B., Bilal, M., Zounemat-Kermani, M., & Li, H. (2017). Evaporation modelling using different machine learning techniques. International Journal of Climatology, 37, 1076–1092.  https://doi.org/10.1002/joc.5064.CrossRefGoogle Scholar
  32. Yang, F., Ichii, K., White, M. A., Hashimoto, H., Michaelis, A. R., Votava, P., et al. (2007). Developing a continental-scale measure of gross primary production by combining MODIS and AmeriFlux data through Support Vector Machine approach. Remote Sensing of Environment, 110(1), 109–122.  https://doi.org/10.1016/j.rse.2007.02.016.CrossRefGoogle Scholar
  33. Zhang, R., Zhou, Y., Luo, H., Wang, F., & Wang, S. (2017). Estimation and analysis of spatiotemporal dynamics of the net primary productivity integrating efficiency model with process model in karst area. Remote Sensing, 9(5), 477.CrossRefGoogle Scholar

Copyright information

© Indian Society of Remote Sensing 2019

Authors and Affiliations

  1. 1.Department of Biosystems EngineeringUniversity of São Paulo / Luiz de Queiroz College of Agriculture (USP/ESALQ)PiracicabaBrazil
  2. 2.Department of Agricultural EngineeringFederal University of Viçosa (UFV)ViçosaBrazil
  3. 3.Department of Civil EngineeringFederal University of Viçosa (UFV)ViçosaBrazil

Personalised recommendations