Advertisement

Relating ALOS-2 PALSAR-2 Parameters to Biomass and Structure of Temperate Broadleaf Hyrcanian Forests

  • Parisa Golshani
  • Yasser MaghsoudiEmail author
  • Hormoz Sohrabi
Research Article
  • 24 Downloads

Abstract

Evaluation of forest biomass is required for sustainable forest management, efficiency valuation and exploring variations in carbon resources. In this research, we studied the possibility of polarimetric synthetic aperture radar (PolSAR) features in order to approximation of forest biomass in Hyrcanian forests. Our study sought to resolve the following inquiries: (1) Does the relevance between aboveground biomass (AGB) and SAR features depend on forest type and structure? (2) Does the use of polarimetric decomposition components elevate the saturation point of SAR response to biomass? (3) What are the most impressive texture parameters for mapping Hyrcanian vegetation biomass? For this purpose, we recorded 115 circular sample plots with 0.1 ha area in four sites, with various forest structures and biomass. Quad-pol PALSAR-2 data were used to apply decomposition methods and investigate the relationship between AGB and PolSAR attributes. To measure the efficiency of PolSAR data for biomass estimation, we used regression analysis, in which second-order and linear models were fit to forecast biomass per hectare, as defined from the field computations. Our results indicated that decomposition features have a high ability to enhance the saturation point and can produce more favorable outcomes than the backscatter coefficients for biomass estimation. Experimental results showed that the response of backscattering coefficients to biomass is affected by the forest type and canopy structure. These findings confirmed that the HH polarization backscatter is better suited for sparse areas, while HV polarization backscatter is qualified for dense areas.

Keywords

Polarimetric SAR Decomposition Forest structure Hyrcanian forest Aboveground biomass 

References

  1. Alappat, V. O., Joshi, A. K., & Krishnamurthy, Y. V. N. (2011). Tropical dry deciduous forest stand variable estimation using SAR data. Journal of the Indian Society of Remote Sensing, 39(4), 583–589.  https://doi.org/10.1007/s12524-011-0118-y.Google Scholar
  2. Antropov, O. (2017). Polarimetric ALOS PALSAR time series in mapping biomass of boreal forests. Remote Sensing, 9, 1–24.  https://doi.org/10.3390/rs9100999.Google Scholar
  3. Attarchi, S., & Gloaguen, R. (2014). Improving the estimation of above ground biomass using dual polarimetric PALSAR and ETM + data in the Hyrcanian mountain forest (Iran). Remote Sensing, 6(5), 3693–3715.  https://doi.org/10.3390/rs6053693.Google Scholar
  4. Austin, J. M., Mackey, B. G., & Van Niel, K. P. (2003). Estimating forest biomass using satellite radar: An exploratory study in a temperate Australian eucalyptus forest. Forest Ecology and Management, 176(1–3), 575–583.  https://doi.org/10.1016/S0378-1127(02)00314-6.Google Scholar
  5. Behera, M. D., Tripathi, P., Mishra, B., Kumar, S., Chitale, V. S., & Behera, S. K. (2016). Above-ground biomass and carbon estimates of shorea robusta and tectona grandis forests using QuadPOL ALOS PALSAR data. Advances in Space Research, 57(2), 552–561.  https://doi.org/10.1016/j.asr.2015.11.010.Google Scholar
  6. Behjou, F. K., Majnounian, B., Dvořák, J., Namiranian, M., Saeed, A., & Feghhi, J. (2009). Productivity and cost of manual felling with a Chainsaw in Caspian forests. Journal of Forest Science, 55(2), 96–100.Google Scholar
  7. Bouvet, A., Mermoz, S., Le Toan, T., Villard, L., Mathieu, R., Naidoo, L., et al. (2018). An above-ground biomass map of african savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sensing of Environment, 206, 156–173.  https://doi.org/10.1016/j.rse.2017.12.030.Google Scholar
  8. Carreiras, J. M. B., Vasconcelos, M. J., & Lucas, R. M. (2012). Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa). Remote Sensing of Environment, 121, 426–442.  https://doi.org/10.1016/j.rse.2012.02.012.Google Scholar
  9. Castel, T., Guerra, F., Caraglio, Y., & Houllier, F. (2002). Retrieval biomass of a large venezuelan pine plantation using JERS-1 SAR data. Analysis of forest structure impact on radar signature. Remote Sensing of Environment, 79(1), 30–41.  https://doi.org/10.1016/S0034-4257(01)00236-X.Google Scholar
  10. Chowdhury, T. A., Thiel, C., Schmullius, C., & Stelmaszczuk-Górska, M. (2013). Polarimetric parameters for growing stock volume estimation using ALOS PALSAR L-band data over Siberian forests. Remote Sensing, 5(11), 5725–5756.  https://doi.org/10.3390/rs5115725.Google Scholar
  11. Cloude, S. R. (1985). Radar target decomposition theorems. Institute of Electrical Engineering and Electronics Letter, 21(1), 22–24.Google Scholar
  12. Coops, N. C. (2002). Eucalypt forest structure and synthetic aperture radar backscatter: A theoretical analysis. Trees, 16(1), 28–46.  https://doi.org/10.1007/s00468-001-0137-3.Google Scholar
  13. Cutler, M. E. J., Boyd, D. S., Foody, G. M., & Vetrivel, A. (2012). Estimating tropical forest biomass with a combination of SAR image texture and landsat TM data: An assessment of predictions between regions. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 66–77.  https://doi.org/10.1016/j.isprsjprs.2012.03.011.Google Scholar
  14. Dobson, M. C., Ulaby, F. T., LeToan, T., Beaudoin, A., Kasischke, E. S., & Christensen, N. (1992). Dependence of radar backscatter on coniferous forest biomass. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 412–415.  https://doi.org/10.1109/36.134090.Google Scholar
  15. Englhart, S., Keuck, V., & Siegert, F. (2011). Aboveground biomass retrieval in tropical forests—The potential of combined X- and L-band SAR data use. Remote Sensing of Environment, 115(5), 1260–1271.  https://doi.org/10.1016/j.rse.2011.01.008.Google Scholar
  16. ESA. (2009). Synthetic aperture radar land applications tutorial, Part I: Background and theory. System. https://earth.esa.int/documents/10174/.../sar_land_apps_1_theory.pdf
  17. Freeman, A., & Durden, S. L. (1998). A three-component scattering model for polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 36(3), 963–973.Google Scholar
  18. Furtado, L. F. A., Silva, T. S. F., & Moraes Novo, E. M. L. (2016). Dual-season and full-polarimetric C band SAR assessment for vegetation mapping in the Amazon Várzea Wetlands. Remote Sensing of Environment, 174, 212–222.  https://doi.org/10.1016/j.rse.2015.12.013.Google Scholar
  19. Ghasemi, N., Sahebi, M. R., & Mohammadzadeh, A. (2011). A review on biomass estimation methods using synthetic aperture radar. International Journal of Geomatics and Geosciences, 1(4), 776–788.Google Scholar
  20. Ghasemi, N., Sahebi, M. R., & Mohammadzadeh, A. (2013). Biomass estimation of a temperate deciduous forest using wavelet analysis. IEEE Transactions on Geoscience and Remote Sensing, 51(2), 765–776.  https://doi.org/10.1109/TGRS.2012.2205260.Google Scholar
  21. Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environmental Research Letters, 2(2007), 045023.  https://doi.org/10.1088/1748-9326/2/4/045023.Google Scholar
  22. Goh, J., Miettinen, J., Chia, A. S., Chew, P. T., Liew, S. C. (2014). Biomass estimation in humid tropical forest using a combination of ALOS PALSAR and SPOT 5 Satellite Imagery. Asian Journal of Geoinformatics, 13(4), 59–72.Google Scholar
  23. Gonçalves, F. G., Santos, J. R., & Treuhaft, R. N. (2011). Stem volume of tropical forests from polarimetric radar. International Journal of Remote Sensing, 32(2), 503–522.  https://doi.org/10.1080/01431160903475217.Google Scholar
  24. Hamdan, O., Aziz, H. K., & Rahman, K. (2011). Remotely sensed L-band Sar data for tropical forest biomass estimation. Journal of Tropical Forest Science, 23(3), 318–327.Google Scholar
  25. Hamdan, O., Mohd Hasmadi, I., Khali Aziz, H., Norizah, K., & Helmi Zulhaidi, M. S. (2015). L-band saturation level for aboveground biomass of dipterocarp forests in peninsular Malaysia. Journal of Tropical Forest Science, 27(3), 388–399.Google Scholar
  26. Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786–804.Google Scholar
  27. Hussin, Y. A., Reich, R. M., & Hoffer, R. M. (1991). Estimating splash pine biomass using radar backscatter. IEEE Transactions on Geoscience and Remote Sensing, 29(3), 427–431.Google Scholar
  28. Hyde, P., Nelson, R., Kimes, D., & Levine, E. (2007). Exploring LiDAR-RaDAR synergy-predicting aboveground biomass in a Southwestern Ponderosa pine forest using LiDAR, SAR and InSAR. Remote Sensing of Environment, 106(1), 28–38.  https://doi.org/10.1016/j.rse.2006.07.017.Google Scholar
  29. Imhoff, M. L. (1995). IV. Conclusions. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 511.Google Scholar
  30. Kasischke, E. S., Melack, J. M., & Dobson, M. C. (1997). The use of imaging radars for ecological applications—A review. Remote Sensing of Environment, 59(2), 141–156.Google Scholar
  31. Kuplich, T. M., Curran, P. J., & Atkinson, P. M. (2005). Relating SAR image texture to the biomass of regenerating tropical forests. International Journal of Remote Sensing, 26(21), 4829–4854.  https://doi.org/10.1080/01431160500239107.Google Scholar
  32. Kuplich, T. M., Salvatori, V., & Curran, P. J. (2000). JERS-1/SAR backscatter and its relationship with biomass of regenerating forests. International Journal of Remote Sensing, 21(12), 2513–2518.  https://doi.org/10.1080/01431160050030600.Google Scholar
  33. Kurvonen, L., Pulliainen, J., & Hallikainen, M. (1999). Retrieval of biomass in boreal forests from Multitempotal ERS-1 and JERS-1 SAR images. IEEE Transactions on Geoscience and Remote Sensing, 37(1 PART 1), 198–205.  https://doi.org/10.1109/36.739154.Google Scholar
  34. Le Toan, T., Quegan, S., Woodward, I., Lomas, M., Delbart, N., & Picard, G. (2004). Relating radar remote sensing of biomass to modelling of forest carbon budgets. Climatic Change, 67(2–3), 379–402.  https://doi.org/10.1007/s10584-004-3155-5.Google Scholar
  35. Lee, J. S. (1981). Refined filtering of image noise using local statistics. Computer graphics and image processing, 15(4): 380–389Google Scholar
  36. Lee, J.-S., & Pottier, E. (2009). Polarimetric radar imaging: From basics to applications. Boca Raton: CRC Press.Google Scholar
  37. Lemp, D., & Koch, B. (2009). Forest Monitoring Using TerraSAR-X Data—Evaluation of Processing Methods and First Results. In Proceedings of TerraSAR-X Science Meeting.Google Scholar
  38. Li, W., Chen, E., Li, Z., Zhang, W., & Jiang, C. (2015). Assessing performance of Tomo-SAR and backscattering coefficient for hemi-boreal forest aboveground biomass estimation. Journal of the Indian Society of Remote Sensing, 9, 1–8.  https://doi.org/10.1007/s12524-015-0468-y.Google Scholar
  39. Lone, J. M., Thota Sivasankar, K. K., Sarma, A. Q., & Raju, P. L. N. (2017). Influence of slope aspect on above ground biomass estimation using ALOS-2 Data. International Journal of Science and Research (IJSR), 6(6), 1422–1428.Google Scholar
  40. Lu, D. (2006). The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 27(7), 1297–1328.  https://doi.org/10.1080/01431160500486732.Google Scholar
  41. Lucas, R., Armston, J., Fairfax, R., Fensham, R., Accad, A., Carreiras, J., et al. (2010). An evaluation of the ALOS PALSAR L-band backscatter—Above ground biomass relationship Queensland, Australia: Impacts of surface moisture condition and vegetation structure. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(4 PART 2), 576–593.  https://doi.org/10.1109/jstars.2010.2086436.Google Scholar
  42. Ma, J., Xiao, X., Qin, Y., Chen, B., Yuanman, H., Li, X., et al. (2017). Estimating aboveground biomass of broadleaf, needleleaf, and mixed forests in Northeastern China through analysis of 25-m ALOS/PALSAR Mosaic Data. Forest Ecology and Management, 389, 199–210.  https://doi.org/10.1016/j.foreco.2016.12.020.Google Scholar
  43. Maghsoudi, Y. (2011). Analysis of Radarsat-2 Full Polarimetric Data for Forest Mapping. Degree of PhD, Department of Geomatics Engineering, University of Calgary.Google Scholar
  44. Montesano, P. M., Nelson, R. F., Dubayah, R. O., Sun, G., Cook, B. D., Ranson, K. J. R., et al. (2014). The uncertainty of biomass estimates from LiDAR and SAR across a Boreal forest structure gradient. Remote Sensing of Environment, 154, 398–407.  https://doi.org/10.1016/j.rse.2014.01.027.Google Scholar
  45. Morel, A. C., Saatchi, S. S., Malhi, Y., Berry, N. J., Banin, L., Burslem, D., et al. (2011). Estimating aboveground biomass in forest and oil palm plantation in Sabah, Malaysian Borneo using ALOS PALSAR data. Forest Ecology and Management, 262(9), 1786–1798.  https://doi.org/10.1016/j.foreco.2011.07.008.Google Scholar
  46. Mougin, E., Proisy, C., Marty, G., Fromard, F., Puig, H., Betoulle, J. L., et al. (1999). Multifrequency and multipolarization radar backscattering from mangrove forests. IEEE Transactions on Geoscience and Remote Sensing, 37(1 PART 1), 94–102.  https://doi.org/10.1109/36.739128.Google Scholar
  47. Neumann, M., Ferro-Famil, L., & Reigber, A. (2010). Estimation of forest structure, ground, and canopy layer characteristics from multibaseline polarimetric interferometric SAR Data. IEEE Transactions on Geoscience and Remote Sensing, 48(3 PART 1), 1086–1104.  https://doi.org/10.1109/tgrs.2009.2031101.Google Scholar
  48. Nguyen, V., Luong, R. T., Kondoh, A., Sharma, R., Nguyen, H. T., To, T. T., et al. (2016). Mapping tropical forest biomass by combining ALOS-2, landsat 8, and field plots data. Land, 5(4), 31.  https://doi.org/10.3390/land5040031.Google Scholar
  49. Ningthoujam, R., Balzter, H., Tansey, K., Morrison, K., Johnson, S., Gerard, F., et al. (2016). Airborne S-Band SAR for forest biophysical retrieval in temperate mixed forests of the UK. Remote Sensing, 8(7), 609.  https://doi.org/10.3390/rs8070609.Google Scholar
  50. Ningthoujam, R. K., Joshi, P. K., & Roy, P. S. (2018). Retrieval of forest biomass for tropical deciduous mixed forest using ALOS PALSAR Mosaic imagery and Fi Eld Plot data. Int J Appl Earth Obs Geoinformation, 69, 206–216.  https://doi.org/10.1016/j.jag.2018.03.007.Google Scholar
  51. Poorzady, M., & Bakhtiari, F. (2009). Spatial and temporal changes of Hyrcanian forest in Iran. IForest, 2, 198–206.  https://doi.org/10.3832/ifor0515-002.Google Scholar
  52. Pourmajidian, M. R., & Rahmani, A. (2009). The influence of single—Tree selection cutting on silvicultural properties of a Northern Hardwood Forest in Iran. American-Eurasian Journal of Agricultural & Environmental Sciences, 5(737), 526–532.Google Scholar
  53. Ramezani, E., Marvie, M. R., Mohadjer, H. D., Knapp, H. A., & Joosten, H. (2008). The late-holocene vegetation history of the Central Caspian (Hyrcanian) forests of Northern Iran. Holocene, 18(2), 307–321.  https://doi.org/10.1177/0959683607086768.Google Scholar
  54. Ranson, K. J., Saatchi, S. S., & Sun, G. (1995). Boreal forest ecosystem characterization with SIR-C/XSAR. IEEE Transactions on Geoscience and Remote Sensing, 33(4), 867–876.Google Scholar
  55. Rauste, Y. (2005). Multi-temporal JERS SAR data in boreal forest biomass mapping. Remote Sensing of Environment, 97(2), 263–275.  https://doi.org/10.1016/j.rse.2005.05.002.Google Scholar
  56. Rauste, Y., Hame, T., Pulliainen, J., Heiska, K., & Hallikainen, M. (1994). Radar-based forest biomass estimation. International Journal of Remote Sensing, 15(14), 2797–2808.  https://doi.org/10.1080/01431169408954285.Google Scholar
  57. Saatchi, S., Marlier, M., Chazdon, R. L., Clark, D. B., & Russell, A. E. (2011). Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass. Remote Sensing of Environment, 115(11), 2836–2849.  https://doi.org/10.1016/j.rse.2010.07.015.Google Scholar
  58. Sagheb-Talebi, K., Pourhashemi, M., & Sajedi, T. (2014). Forests of Iran: A treasure from the past, a hope for the future. Berlin: Springer.Google Scholar
  59. Sai Bharadwaj, P., Kumar, S., Kushwaha, S. P. S., & Bijker, W. (2015). Polarimetric scattering model for estimation of above ground biomass of multilayer vegetation using ALOS-PALSAR Quad-Pol data. Physics and Chemistry of the Earth, Parts A/B/C, 83–84, 187–195.  https://doi.org/10.1016/j.pce.2015.09.003.Google Scholar
  60. Sandberg, G., Ulander, L. M. H., Fransson, J. E. S., Holmgren, J., & Le Toan, T. (2011). L- and P-band backscatter intensity for biomass retrieval in Hemiboreal forest. Remote Sensing of Environment, 115(11), 2874–2886.  https://doi.org/10.1016/j.rse.2010.03.018.Google Scholar
  61. Santos, J. R., Freitas, C. C., Araujo, L. S., Dutra, L. V., Mura, J. C., Gama, F. F., et al. (2003). Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest. Remote Sensing of Environment, 87(4), 482–493.  https://doi.org/10.1016/j.rse.2002.12.001.Google Scholar
  62. Sarker, M. L. R., Nichol, J., Ahmad, B., Busu, I., & Rahman, A. A. (2012). Potential of texture measurements of two-date dual polarization PALSAR data for the improvement of forest biomass estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 69, 146–166.  https://doi.org/10.1016/j.isprsjprs.2012.03.002.Google Scholar
  63. Sarker, L. R., Nichol, J., Iz, H. B., Ahmad, B. B., & Rahman, A. A. (2013). Forest biomass estimation using texture measurements of high-resolution. IEEE Transactions on Geoscience and Remote Sensing, 51(6): 3371–84.Google Scholar
  64. Shahrakhzadeh, U., Sohrabi, H., Copenheaver, C. A., Shahrokhzadeh, U., Sohrabi, H., Copenheaver, C. A., et al. (2015). Above ground biomass and leaf area equations for three common tree species of hyrcanian temperate forests in Northern Iran. Botany, 93(10), 663–670.Google Scholar
  65. Sharifi, A., & Amini, J. (2015). Forest biomass estimation using synthetic aperture radar polarimetric features. Journal of Applied Remote Sensing, 9(1), 97695.Google Scholar
  66. Shimada, M., Isoguchi, O., Tadono, T., & Isono, K. (2009). PALSAR radiometric and geometric calibration. IEEE Transactions on Geoscience and Remote Sensing, 47(12), 3915–3932.  https://doi.org/10.1109/TGRS.2009.2023909.Google Scholar
  67. Thumaty, K. C., Fararoda, R., Middinti, S., Gopalakrishnan, R., Jha, C. S., & Dadhwal, V. K. (2015). Estimation of above ground biomass for central indian deciduous forests using ALOS PALSAR L-band data. Journal of the Indian Society of Remote Sensing.  https://doi.org/10.1007/s12524-015-0462-4.Google Scholar
  68. Toan, T., Le, A., Beaudoin, J. Riom, & Guyon, D. (1992). Relating forest biomass to SAR Data. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 403–411.  https://doi.org/10.1109/36.134089.Google Scholar
  69. Tsui, O. W., Coops, N. C., Wulder, M. A., & Marshall, P. L. (2013). Integrating airborne LiDAR and space-borne radar via multivariate Kriging to estimate above-ground biomass. Remote Sensing of Environment, 139, 340–352.  https://doi.org/10.1016/j.rse.2013.08.012.Google Scholar
  70. van Zyl, J. J. (1992). Application of Cloude’s target decomposition theorem to polarimetric imaging radar data. SPIE Conference on Radar Polarimetry, 1748, 184.  https://doi.org/10.1117/12.140615.Google Scholar
  71. Vashum, K. T., & Jayakumar, S. (2012). Ecosystem & ecography methods to estimate above-ground biomass and carbon stock in natural forests—A review. Journal of Ecosystem & Ecography.  https://doi.org/10.4172/2157-7625.1000116.Google Scholar
  72. Waez-Mousavi, S. M. (2017). Humus systems in the Caspian Hyrcanian temperate forests. Applied Soil Ecology.  https://doi.org/10.1016/j.apsoil.2017.09.022.Google Scholar
  73. Xu, B., Pan, Y., Plante, A. F., Johnson, A., Cole, J., & Birdsey, R. (2016). Decadal change of forest biomass carbon stocks and tree demography in the Delaware River Basin. Forest Ecology and Management, 374, 1–10.  https://doi.org/10.1016/j.foreco.2016.04.045.Google Scholar
  74. Yamaguchi, Y., Moriyama, T., Ishido, M., & Yamada, H. (2005). Four-component scattering model for polarimetric SAR image decomposition. IEEE Transactions on Geoscience and Remote Sensing, 43(8), 1699–1706.Google Scholar
  75. Yamaguchi, Y., Yajima, Y., & Yamada, H. (2006). A four-component decomposition of POLSAR images based on the coherency matrix. IEEE Geoscience and Remote Sensing Letters, 3(3), 292–296.  https://doi.org/10.1109/LGRS.2006.869986.Google Scholar
  76. Zhang, Z., Ni, W., Sun, G., Huang, W., Ranson, K. J., Cook, B. D., et al. (2017). Biomass retrieval from L-band polarimetric UAVSAR backscatter and PRISM stereo imagery. Remote Sensing of Environment, 194, 331–346.  https://doi.org/10.1016/j.rse.2017.03.034.Google Scholar
  77. Zhao, P., Dengsheng, L., Wang, G., Liu, L., Li, D., Zhu, J., et al. (2016). Forest aboveground biomass estimation in Zhejiang Province using the integration of landsat TM and ALOS PALSAR data. International Journal of Applied Earth Observation and Geoinformation, 53, 1–15.  https://doi.org/10.1016/j.jag.2016.08.007.Google Scholar
  78. Zianis, D., & Mencuccini, M. (2004). On simplifying allometric analyses of forest biomass. Forest Ecology and Management, 187(2–3), 311–332.  https://doi.org/10.1016/j.foreco.2003.07.007.Google Scholar

Copyright information

© Indian Society of Remote Sensing 2019

Authors and Affiliations

  1. 1.Department of ForestryTarbiat Modares UniversityTehranIran
  2. 2.Faculty of Geodesy and Geomatics EngineeringK.N. Toosi University of TechnologyTehranIran

Personalised recommendations