Advertisement

Glacial Geomorphology and Landscape Evolution of the Thangu Valley, North Sikkim Himalaya, India

  • Jyotsna Dubey
  • Sheikh Nawaz AliEmail author
  • Anupam Sharma
  • P. Morthekai
  • Rupendra Singh
  • R. K. Sharma
  • Pratima Pandey
  • Biswajeet Thakur
  • Vaibhava Srivastava
Research Article
  • 117 Downloads

Abstract

The present study describes glacial-geomorphological landforms in and around Thangu area, North Sikkim, India, and also provides significant insights about the evolution of pro- and paraglacial landscapes. Paraglacial processes are the governing mechanism of landscape evolution in deglaciating valleys and are now studied to understand the deglacial and postglacial landscape dynamics. We here present and describe detailed glacial geomorphology of Lashar and Chopta valleys as the area is strongly modified by the erosional and depositional imprints of late Pleistocene glaciations (MIS 2). Using geomorphological and stratigraphical methods, field surveys, SRTM DEM, Landsat ETM + and Google Earth Pro data, we have mapped glacial and glaciofluvial landforms and established moraine stratigraphy in the study area. Based on the morphostratigraphical mapping of the moraines supported by limited optical chronology, four events of glaciations have been identified in the in the Lashar, Chopta and Kalip valleys and date back to last glacial maximum and advocate for a widespread ice cover with large outlet tributary glaciers. The disposition of the lateral and terminal moraines has been used to estimate the area of paleoglacial extent and their corresponding ice volume during different stages. The presence of proglacial lakes, sensitive indicators of climate change, suggests that the glaciers in the region are melting and radically responding to global warming and are potentially vulnerable for generating glacial lake outburst floods.

Keywords

Landscape evolution Geomorphology Remote sensing and mapping Moraine stratigraphy Sikkim Himalaya, India 

Notes

Acknowledgements

The authors are thankful to the Director, Birbal Sahni Institute of Palaeosciences, Lucknow, India, for providing infrastructural facilities. Special thanks are to the Forest department, Govt. of Sikkim, Dept. of Home, Govt. of Sikkim and the Indian Army, Sikkim, for their help in providing necessary permissions during the field work. Thanks are also due to the field staffs who have worked tirelessly in the harsh conditions during the field work. Authors also express their gratitude to anonymous reviewers for their critical comments that greatly helped in improving the manuscript.

Funding

This work was carried out under Project No. SR/DGH-89/2014 with financial support from the Department of Science and Technology (DST), Government of India, India.

References

  1. Ageta, Y., & Higuchi, K. (1984). Estimation of mass balance components of a summer-accumulation type glacier in the Nepal Himalaya. Geografiska Annaler, 66A(3), 249–255.CrossRefGoogle Scholar
  2. Ali, S. N., Biswas, R. H., Shukla, A. D., & Juyal, N. (2013). Chronology and climatic implications of late Quaternary glaciations in the Goriganga valley, central Himalaya, India. Quaternary Science Review, 73, 59–76.CrossRefGoogle Scholar
  3. Ali, S. N., Dubey, J., Ghosh, R., Quamar, M. F., Sharma, A., Morthekai, P., Dimri, A. P., Shekhar, M., Arif, M., & Agrawal, S. (2018a). High frequency abrupt shifts in the Indian summer monsoon since Younger Dryas in the Himalaya. Scientific Reports, 8(1), 9287.CrossRefGoogle Scholar
  4. Ali, S. N., Dubey, J., Morthekai, P., Sharma, A., Singh, R., & Prizomwala, S. (2018b). Climate forcing and the initiation of glacier advance during MIS-2 in the North Sikkim Himalaya, India. Journal of Asian Earth Science (with editor after revision).Google Scholar
  5. Ali, S. N., & Juyal, N. (2014). Chronology of late Quaternary glaciations in Indian Himalaya, a critical review. Journal of the Geological Society of India, 82(6), 628–638.Google Scholar
  6. Alley, R. B. (2000). The Younger Dryas cold interval as viewed from central Greenland. Quaternary Science Reviews, 19(1–5), 213–226.CrossRefGoogle Scholar
  7. Ashraf, A., Naz, R., & Rooh, R. (2012). Monitoring and estimation of glacial response of Azad Jammu and Kashmir using remote sensing and GIS techniques. Pakistan Journal of Meteorology, 816(16), 31–41.Google Scholar
  8. Bali, R., Agarwal, K. K., Ali, N. S., Rastogi, S. K., Krishna, K., & Srivastava, P. (2013). Chronology of Late Quaternary Glaciation in the Pindar valley, Alaknanda Basin, Central Himalaya (India). Journal of Asian Earth Sciences, 66, 221–233.CrossRefGoogle Scholar
  9. Ballantyne, C. K. (2002a). A general model of paraglacial landscape response. The Holocene, 12, 371–376.CrossRefGoogle Scholar
  10. Ballantyne, C. K. (2002b). Paraglacial geomorphology. Quaternary Science Reviews, 21, 1935–2017.CrossRefGoogle Scholar
  11. Barnard, P. L., Owen, L. A., & Finkel, R. C. (2004). Style and timing of glacial and paraglacial sedimentation in a monsoon-influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya. Sedimentary Geology, 165, 199–221.CrossRefGoogle Scholar
  12. Barr, I. D., & Lovell, H. (2014). A review of topographic controls on moraine distribution. Geomorphology, 226, 44–64.CrossRefGoogle Scholar
  13. Barsch, D. (1996). Rockglaciers, indicators for the present and former geoecology in high mountain environments (p. 331). Berlin, Heidelberg: Springer.Google Scholar
  14. Basnett, S., Kulkarni, V., & Bolch, T. (2013). The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India. Journal of Glaciology, 59(218), 1–12.CrossRefGoogle Scholar
  15. Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L. I., et al. (2012). Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth Science Reviews, 114, 156–174.CrossRefGoogle Scholar
  16. Benn, D. I., & Evans, D. J. A. (1998). Glaciers and glaciation. London: Arnold.Google Scholar
  17. Benn, D. I., & Evans, D. J. A. (2010). Glaciers and glaciations (2nd ed., p. 734). London: Arnold.Google Scholar
  18. Bhattacharyya, A., & Chauhan, M. S. (1997). Vegetational and climatic changes during recent past around Tipra bank glacier, Garhwal Himalaya. Current Science, 72(6), 408–412.Google Scholar
  19. Bhattacharyya, A., Ranhotra, P. S., Ganjoo, R. K., & Kaul, M. N. (2006). The early Holocene vegetation and climate in Naradu Glacier Valley of Kinnaur District, Himachal Pradesh. Palaeobotanist, 55(1–3), 89–96.Google Scholar
  20. Bisht, P., Ali, S. N., Rana, N., Singh, S., Sundriyal, Y. P., Bagri, D. S., et al. (2017). Pattern of holocene glaciation in the monsoon-dominated Kosa valley, central Himalaya, uttarakhand, India. Geomorphology, 284, 130–141.CrossRefGoogle Scholar
  21. Bisht, P., Ali, S. N., Shukla, A. D., Negi, S., Sundriyal, Y. P., Yadava, M. G., et al. (2016). Chronology of late Quaternary glaciation and landform evolution in the upper Dhauliganga valley (Trans Himalaya), Uttarakhand, India. Quaternary Science Reviews, 129, 147–162.CrossRefGoogle Scholar
  22. Blomdin, R., Heyman, J., Stroeven, A. P., Hättestrand, C., Harbor, J. M., Gribenski, N., et al. (2014). Glacial geomorphology of the Altai and Western Sayan Mountains, Central Asia. Journal of Maps, 12(1), 123–136.CrossRefGoogle Scholar
  23. Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., et al. (2012). The state and fate of Himalayan glaciers. Science, 336, 310–314.CrossRefGoogle Scholar
  24. Calkin, P. E., Haworth, L. A., & Ellis, J. M. (1987). Rock glaciers of central brooks range, Alaska, U.S.A. In J. R. Giardino, J. F. Shroder, & J. D. Vitek (Eds.), Rock glaciers (pp. 65–82). Boston: Allen and Unwin.Google Scholar
  25. Canas, D., Chan, W. M., Chiu, A., Jung-Ritchie, L., Leung, M., Pillay, L., et al. (2015). Potential environmental effects of expanding lake Jokulsarlon in response to melting of Breidamerkkurjokull, Iceland. Cartographica; The International Journal for Geographic Information and Geovisualization, 50(3), 204–213.CrossRefGoogle Scholar
  26. Carrivick, J. L., & Tweed, F. S. (2013). Proglacial lakes, character, behaviour and geological importance. Quaternary Science Review, 78, 34–52.CrossRefGoogle Scholar
  27. Chalise, S. R., Shrestha, M. L., Budhathoki, K. P., & Shrestha, M. S. (2005). Glacio-hydrological aspects of climate change in the Himalayas: Mitigation of glacial lake outburst floods in Nepal. In T. Wagener, S. Franks, H. V. Gupta, E. Boegh, L. Bastidas, C. Nobre, & C. D. O. Galvao (Eds.), Regional hydrological impacts of climate change-impact assessment and decision making (Vol. 295, pp. 309–316)., IAHS Publ Wallingford: IAHS Press.Google Scholar
  28. Champion, H. G., & Seth, S. K. (1968). A revised survey of forest types of India (p. 404). New Delhi: Government of India Press.Google Scholar
  29. Chaohai, L., & Sharma, C. K. (1988). Report on first expedition to glaciers in the Pumqu (Arun) and Poiqu (Bhote-sun Kosi) river basins, Xizang (Tibet), China (p. 192). Beijing: Science Press.Google Scholar
  30. Charpentier, J. (1823). Essai sur la Constitution Geognostique des Pyrenees (p. 633). Paris: F. G. Levrault.Google Scholar
  31. Church, M., & Ryder, J. M. (1972). Paraglacial sedimentation: A consideration of fluvial processes conditioned by glaciation. Bulletin of the Geological Society of America, 83, 3059–3071.CrossRefGoogle Scholar
  32. Clague, J. J., & Evans, S. G. (2000). A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quaternary Science Reviews, 19, 1763–1783.CrossRefGoogle Scholar
  33. Costa, J. E., & Schuster, R. L. (1988). The formation and failure of natural dams. Geological Society of America Bulletin, 100, 1054–1068.CrossRefGoogle Scholar
  34. Dar, R. A., Jaan, O., Murtaza, K. O., & Romshoo, S. A. (2017). Glacial-geomorphic study of the Thajwas glacier valley, Kashmir Himalayas, India. Quaternary International, 444(Part A), 157–171.CrossRefGoogle Scholar
  35. Dubey, J., Ghosh, R., Agrawal, S., Quamar, M. F., Morthekai, P., Sharma, R. K., Sharma, A., Pandey, P., Srivastava, V., & Ali, S. N. (2018). Characteristics of modern biotic data and their relationship to vegetation of the Alpine zone of Chopta valley, North Sikkim, India: Implications for palaeovegetation reconstruction. Holocene, 28, 363–376.CrossRefGoogle Scholar
  36. Dyke, A. S., & Prest, V. K. (1987). Late Wisconsinan and Holocene history of the Laurentide Ice Sheet Geographie Physique et. Quaternaire, 41, 237–263.Google Scholar
  37. ENVIS. (2016). Environmental information system (ENVIS) centre. New Delhi: Ministry of Environment and Forest, Govt. of India.Google Scholar
  38. Eugster, P., Scherler, D., Thiede, R. C., Codilean, A. T., & Strecker, M. R. (2016). Rapid last glacial maximum deglaciation in the Indian Himalaya coeval with midlatitude glaciers: New insights from 10Be-dating of ice-polished bedrock surfaces in the Chandra Valley, NW Himalaya. Geophysical Research Letters.  https://doi.org/10.1002/2015GL066077.CrossRefGoogle Scholar
  39. Evans, I. S. (2004). Cirque, glacial. In Goudie, A. S. (Ed.), Encyclopedia of geomorphology (Vol. 1, pp. 154–158). London: Routledge.Google Scholar
  40. Evans, I. S. (2007). Glacial landforms, erosional features: Major scale forms. In Elias, S. A. (Ed.), Encyclopedia of quaternary science (pp. 838–852). Amsterdam, Netherlands: Elsevier.CrossRefGoogle Scholar
  41. Evans, I. S. (2008). Glacial erosional processes and forms, mountain glaciation and glacier geography. In T. P. Burt, R. J. Chorley, D. Brunsden, N. J. Cox, & A. S. Goudie (Eds.), The history of the study of landforms or the development of geomorphology (Vol. 4, pp. 413–494)., Quaternary and recent processes and forms (1890–1960s) and the midcentury revolutions London: Geological Society.Google Scholar
  42. Finkel, R. C., Owen, L. A., Barnard, P. L., & Caffee, M. W. (2003). Beryllium-10 dating of Mount Everest moraines indicates a strong monsoonal influence and glacial synchroneity throughout the Himalaya. Geology, 31, 561–564.CrossRefGoogle Scholar
  43. Fujita, K. (2008). Influence of precipitation seasonality on glacier mass balance and its sensitivity to climate change. Annals of Glaciology, 48, 88–92.CrossRefGoogle Scholar
  44. Fujita, K., & Ageta, Y. (2000). Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model. Journal of Glaciology, 46(153), 244–252.CrossRefGoogle Scholar
  45. Ganju, A., Nagara, Y. C., Sharma, L. N., Sharma, S., & Juyal, N. (2018). Luminescence chronology and climatic implication of the late quaternary glaciation in the Nubra valley, Karakoram Himalaya, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 502, 52–62.CrossRefGoogle Scholar
  46. Gardelle, J., Arnaud, Y., & Berthier, E. (2011). Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Global and Planetary Change, 75(1–2), 47–55.CrossRefGoogle Scholar
  47. Geology and Mineral Resources of the States of India Geological Survey of India Miscellaneous Publication No. 30, Part XIX – Sikkim.Google Scholar
  48. Govindha Raj, K. B. (2010). Remote sensing based hazard assessment of glacial lakes, a case study in Zanskar basin, Jammu and Kashmir, India. Geomatics, Nat Hazards Risk, 1, 339–347.CrossRefGoogle Scholar
  49. Govindha Raj, K. B., Kumar, K. V., & Remya, S. N. (2012). Remote sensing based inventory of glacial lakes in Sikkim Himalaya, semi-automated approach using satellite data. Geomatics, Natural Hazards and Risk.  https://doi.org/10.1080/19475705.2012.707153.CrossRefGoogle Scholar
  50. Govindha Raj, K. B., Remya, S. N., & Kumar, K. V. (2013). Remote sensing-based hazard assessment of glacial lakes in Sikkim Himalaya. Current Science, 104–3, 359–364.Google Scholar
  51. Graf, W. L. (1976). Cirques as glacier locations. Arctic and Alpine Research, 8(1), 79–90.CrossRefGoogle Scholar
  52. Haeberli, W. (1985). Creep of mountain permafrost, internal structure and flow of alpine rock glaciers. Mitteilungen der VAW/ETH Zürich, 77, 119.Google Scholar
  53. Heckmann, T., McColl, S., & Morche, D. (2015). Retreating ice, research in proglacial areas matters. Earth Surface Processes and Landforms, 41(2), 271–276.CrossRefGoogle Scholar
  54. Hein, A. S., Dunai, T. J., Hulton, N. R. J., & Xu, S. (2011). Exposure dating outwash gravels to determine the age of the greatest Patagonian glaciations. Geology, 39, 103–106.CrossRefGoogle Scholar
  55. Hu, G., Yi, C. L., Zhang, J. F., Liu, J. H., Jiang, T., & Qin, X. (2015). Luminescences dating of glacial deposits near the eastern Himalayan syntaxis using different grain size fractions. Quaternary Science Review, 124, 124–144.CrossRefGoogle Scholar
  56. Humlum, O. (1998). The climatic significance of rock glaciers. Permafrost and Periglacial Processes, 9(4), 375–395.CrossRefGoogle Scholar
  57. Humlum, O., Christiansen, H. H., & Juliussen, H. (2007). Avalanche-derived rock glaciers in Svalbard. Permafrost and Periglacial Processes, 18(1), 75–88.CrossRefGoogle Scholar
  58. Immerzeel, W. W., van Beek, L. P., & Bierkens, M. F. (2010). Climate change will affect the Asian water towers. Science, 328, 1382–1385.CrossRefGoogle Scholar
  59. IPCC. (2014). In Core Writing Team, R. K. Pachauri, L. A. Meyer (Ed.), Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva: IPCC.Google Scholar
  60. Kar, R., Ranhotra, P. S., Bhattacharyya, A., & Sekar, B. (2002). Vegetation vis-à-vis climate and glacial fluctuations of the Gangotri glacier since last 2000 years. Current Science, 82(3), 347–351.Google Scholar
  61. Killingbeck, J., & Ballantyne, C. K. (2012). Earth hummocks in West Dartmoor, SW England, characteristics, age and origin. Permafrost and Periglacial Processes, 23(2), 152–161.CrossRefGoogle Scholar
  62. Knight, J., & Harrison, S. (2018). Paraglacial evolution of the Irish landscape. Irish Geography 51(2). https://www.academia.edu/37832904/Paraglacial_evolution_of_the_Irish_landscape.
  63. Koul, M. N. (1990). Glacial and fluvial geomorphology of western Himalaya (Liddar valley) (p. 322). New Delhi: Concept Publishing Company.Google Scholar
  64. Krigström, A. (1962). Geomorphological studies of sandur plains and their braided Rivers in Iceland. Geografiska Annaler, 44, 328–346.Google Scholar
  65. Krishna, A. P. (2005). Snow and glacier cover assessment in the high mountains of Sikkim Himalaya. Hydrological Processes, 19(12), 2375–2383.CrossRefGoogle Scholar
  66. Kulkarni, A. V., Bahuguna, I. M., Rathore, B. P., Singh, S. K., Randhawa, S. S., Sood, R. K., et al. (2007). Glacial retreat in Himalaya using Indian remote sensing satellite data. Current Science, 92(1), 69–74.Google Scholar
  67. Lindholm, S. M., & Heyman, J. (2016). Glacial geomorphology of the Maidika region, Tibetan Plateau. Journal of Maps, 12(5), 797–803.CrossRefGoogle Scholar
  68. Maizels, J. K. (1995). Sediments and landforms of modern proglacial terrestrial environments. In J. Menzies (Ed.), Modern glacial environments (pp. 365–416). Oxford: Butterworth-Heinemann.Google Scholar
  69. Marren, P. M. (2005). Magnitude and frequency in proglacial Rivers, a geomorphological and sedimentological perspective. Earth Science Reviews, 70(3), 203–251.CrossRefGoogle Scholar
  70. Marren, P. M., & Toomath, S. C. (2014). Channel pattern of proglacial Rivers, topographic forcing due to glacier retreat. Earth Surface Processes and Landforms, 39(7), 943–951.CrossRefGoogle Scholar
  71. Mehta, M., Dobhal, D. P., Pratap, B., Majeed, Z., Gupta, A. K., & Srivastava, P. (2014). Late Quaternary glacial advances in the Tons River Valley, Garhwal Himalaya, India and regional synchronicity. The Holocene, 24(10), 1336–1350.CrossRefGoogle Scholar
  72. Miˆndrescu, M., Evans, I. S., & Cox, N. J. (2010). Climatic implications of cirque distribution in the Romanian Carpathians, palaeowind directions during glacial periods. Journal of Quaternary Science, 25(6), 875–888.CrossRefGoogle Scholar
  73. Mool, P. K., & Bajracharya, S. R. (2003). Tista Basin, Sikkim Himalaya inventory of glaciers, Glacial Lakes, and the identification of potential glacial lake outburst floods (GLOFs) affected by global warming in the mountains of Himalayan Region (p. 145). Kathmandu: ICIMOD.Google Scholar
  74. Nie, Y., Liu, Q., & Liu, S. (2013). Glacial lake expansion in the central Himalayas by Landsat images, 1990–2010. PLoS One, 8(12), e83973.CrossRefGoogle Scholar
  75. Oerlemans, J. (2005). Extracting a climate signal from 169 glacier records. Science, 308(5722), 675–677.CrossRefGoogle Scholar
  76. Orr, E. N., Owen, L. A., Saha, S., Caffee, M. W., & Murari, M. K. (2018). Quaternary glaciation of the Lato Massif, Zanskar Range of the NW Himalaya. Quaternary Science Reviews, 183, 140–156.CrossRefGoogle Scholar
  77. Owen, L. A. (2009). Latest Pleistocene and Holocene glacier fluctuations in the Himalaya and Tibet. Quaternary Science Reviews, 28, 2150–2164.CrossRefGoogle Scholar
  78. Pandey, P., & Venkataraman, G. (2013). Changes in the glaciers of Chandra-Bhaga basin, Himachal Himalaya, India, between 1980 and 2010 measured using remote sensing. International Journal of Remote Sensing, 34(15), 5584–5597.CrossRefGoogle Scholar
  79. Petrakov, D. A., Tutubalina, O. V., Aleinikov, A. A., Chernomorets, S. S., Evans, G., Kidyaeva, V. M., et al. (2011a). Monitoring of Bhaskara Glacier lakes (Central Caucasus, Russia) and modeling of their potential outburst. Natural Hazards.  https://doi.org/10.1007/s11069-011-9983-5.CrossRefGoogle Scholar
  80. Petrakov, D. A., Tutubalina, O. V., Aleinikov, A. A., Chernomorets, S. S., Evans, G., Kidyaeva, V. M., et al. (2011b). Monitoring of Bhaskara Glacier lakes (Central Caucasus Russia) and modeling of their potential outburst. Natural Hazards.  https://doi.org/10.1007/s11069-011-9983-5.CrossRefGoogle Scholar
  81. Phillips, W. M., Sloan, V. F., Shroder, J. F., Sharma, P., Clarke, M. L., & Rendell, H. M. (2000). Asynchronous glaciation at Nanga Parbat, northwestern Himalaya Mountains, Pakistan. Geology, 28, 431–434.CrossRefGoogle Scholar
  82. Porter, S. C. (1977). Present and past glaciation threshold in the Cascade Range, Washington, USA, topographic and climatic controls, and palaeo-climatic implications. Journal of Glaciology, 18, 101–116.CrossRefGoogle Scholar
  83. Rana, R. S., Bhagat, R. M., Vaibav, K., & Sood, C. (2006). Inventory of two decades for glaciers and glacier lakes in Satluj River basin of Himachal Pradesh. Journal of Agricultural Physics, 6(1), 28–34.Google Scholar
  84. Ranhotra, P. S., & Bhattacharyya, A. (2010). Holocene Palaeoclimate and Glacier Fluctuations within Baspa Valley, Kinnaur, Himachal Pradesh. Journal Geological Society of India, 75(3), 527–532.CrossRefGoogle Scholar
  85. Richardson, S. D., & Reynolds, J. M. (2000). An overview of glacial hazards in the Himalayas. Quaternary International, 65–66, 31–47.CrossRefGoogle Scholar
  86. Rippin, D., Willis, I., Arnold, N., Hodson, A., Moore, J., Kohler, J., et al. (2003). Changes in geometry and subglacial drainage of MidreLov_enbreen, Svalbard, determined from digital elevation models. Earth Surface Processes Landforms, 28(3), 273–298.CrossRefGoogle Scholar
  87. Rupper, S., Roe, G., & Gillespie, A. (2009). Spatial patterns of Holocene glacier advance and retreat in Central Asia. Quaternary Research, 72(3), 337–346.CrossRefGoogle Scholar
  88. Saha, S., Sharma, M. C., Murari, M. K., Owen, L. A., & Caffee, M. W. (2015). Geomorphology, sedimentology and minimum exposure ages of streamlined subglacial landforms in the NW Himalaya, India. Boreas, 5(2), 284–303.CrossRefGoogle Scholar
  89. Sakai, A. (2012). Glacial lakes in the Himalayas, a review on formation and expansion processes. Global Environmental Research, 16, 23–30.Google Scholar
  90. Sati, S. P., Ali, S. N., Rana, N., Bhattacharya, F., Bhushan, R., Shukla, A. D., et al. (2014). Timing and extent of Holocene glaciations in themonsoon dominated Dunagiri valley (Bangni glacier), central Himalaya, India. Journal of Asian Earth Sciences, 91, 125–136.CrossRefGoogle Scholar
  91. Scapozza, C. (2016). Evidence of paraglacial and paraperiglacial crisis in alpine sediment transfer since the last glaciation (Ticino, Switzerland). Quaternaire, 27, 139–155.CrossRefGoogle Scholar
  92. Scherler, D., Bookhagen, B., Strecker, M. R., von Blanckenburg, F., & Rood, D. (2010). Timing and extent of late Quaternary glaciation in the western Himalaya constrained by 10Be moraine dating in Garhwal, India. Quaternary Science Reviews, 29, 815–831.CrossRefGoogle Scholar
  93. Schunke, E. (1977). Zur genese der Thufur Islands und Öst-Grönlands(On the Genesis of Thufurs in Iceland and East Greenland). Erdkunde, 31(4), 279–287.CrossRefGoogle Scholar
  94. Schunke, E., & Zoltai, S. C. (1988). Earth hummocks. In M. J. Clark (Ed.), Advances in periglacial geomorphology (pp. 231–245). Chichester: Wiley.Google Scholar
  95. Seong, Y. B., Bishop, M. P., Bush, A., Clendon, P., Copland, L., Finkel, R. C., et al. (2009). Landforms and landscape evolution in the Skardu, Shigar and Braldu Valleys, Central Karakoram. Geomorphology, 103(2), 251–267.CrossRefGoogle Scholar
  96. Sharma, S., Chand, P., Bisht, P., Shukla, A. D., Bartarya, S. K., Sundriyal, Y. P., et al. (2016). Factors responsible for driving the glaciation in the Sarchu Plain, eastern Zanskar Himalaya, during the late Quaternary. Journal of Quaternary Science, 31, 495–511.CrossRefGoogle Scholar
  97. Sharma, R. K., Pradhan, P., Sharma, N. P., & Shrestha, D. G. (2018). Remote sensing and in situ-based assessment of rapidly growing South Lhonak glacial lake in eastern Himalaya, India. Natural Hazards, 93(1), 393–409.CrossRefGoogle Scholar
  98. Shi, Y. F. (2002). Characteristics of late Quaternary monsoonal glaciation on the Tibetan Plateau and in East Asia. Quaternary International, 97–98, 79–91.CrossRefGoogle Scholar
  99. Shrestha, A. B., Budhathoki, K. P., Shrestha, R. K., & Adhikari, R. (2004). Bathymetric survey of Tsho Rolpa Glacier Lake-2002. Journal of Hydrology and Meteorology, 1(1), 13–15.Google Scholar
  100. Shukla, T., Mehta, M., Jaiswal, M. K., Srivastava, P., Dobhal, D. P., Nainwal, H. C., et al. (2018). Late Quaternary glaciation history of monsoon-dominated Dingad basin, central Himalaya, India. Quaternary Science Reviews, 181, 43–64.CrossRefGoogle Scholar
  101. Singh, S. K., Rathore, B. P., Bahuguna, I. M., Ramanathan, A. L., & Ajai, (2012). Estimation of glacier ice thickness using ground penetrating radar in the Himalaya region. Current Science, 103(1), 68–73.Google Scholar
  102. Sirocko, F., Sarnthein, M., Erlenkeuser, H., Lange, H., Arnold, M., & Duplessy, J. C. (1993). Century-scale events in monsoonal climate over the past 24,000 years. Nature, 364, 322–324.CrossRefGoogle Scholar
  103. Stroeven, A. P., attestrand, C., Heyman, J., Kleman, J., & Moren, B. M. (2013). Glacial geomorphology of the tian shan. Journal of Maps, 9(4), 505–512.CrossRefGoogle Scholar
  104. Svendsen, J. I., Gataullin, V., Mangerud, J., & Polyak, L. (2004). The glacial history of the Barents and Kara Sea region. In J. Ehlers & P. Gibbard (Eds.), Quaternary glaciations—Extent and chronology (Vol. 1). Amsterdam: Elsevier. (in press).Google Scholar
  105. TanDong, Y., ZhiGuo, L., Wei, Y., XueJun, G., LiPing, Z., ShiChang, K., et al. (2010). Glacial distribution and mass balance in the Yarlung Zangbo River and its influence on lakes. Chinese Science of Bulletin, 55(20), 2072–2078.CrossRefGoogle Scholar
  106. Tarnocai, C., & Zoltai, S. C. (1978). Earth hummocks of the Canadian Arctic and Subarctic. Arctic and Alpine Research, 10(3), 581–594.CrossRefGoogle Scholar
  107. Taylor, P. J., & Mitchell, W. A. (2000). The quaternary glacial history of the Zanskar range, north-west Indian Himalaya. Quaternary International, 65, 81–99.CrossRefGoogle Scholar
  108. Thackray, G. D., Owen, L. A., & Yi, C. L. (2008). Timing and nature of late Quaternary mountain glaciation. Journal of Quaternary Science, 23(6–7), 503–508.CrossRefGoogle Scholar
  109. Thompson, L. G., Yao, T., Davis, M. E., Henderson, K. A., Mosley-Thompson, E., Lin, P. N., et al. (1997). Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core. Science, 276, 1821–1825.CrossRefGoogle Scholar
  110. Tweed, F. S., & Russell, A. J. (1999). Controls on the formation and sudden drainage of glacier-impounded lakes, implications for jo¨kulhlaup characteristics. Progress in Physical Geography, 23(1), 79–110.CrossRefGoogle Scholar
  111. Wang, J. B., Zhu, L. P., Daut, G., Ju, J. T., Lin, X., Wang, Y., et al. (2009). Investigation of bathymetry and water quality of Lake Nam Co, the largest lake on the central Tibetan Plateau, China. Limnology, 10, 149–158.  https://doi.org/10.1007/s10201-009-0266-8.CrossRefGoogle Scholar
  112. Westoby, M. J., Glasser, N. F., Brasington, J., Hambrey, M. J., Quincey, D. J., & Reynolds, J. M. (2014). Modelling outburst floods from moraine-dammed glacial lakes. Earth Science Reviews, 134, 137–159.CrossRefGoogle Scholar
  113. Worni, R., Huggel, C., Clague, J. J., Schaub, Y., & Stoffel, M. (2014). Coupling glacial lake impact, dam breach, and flood processes: A modeling perspective. Geomorphology, 224, 161–176.CrossRefGoogle Scholar
  114. Worni, R., Huggel, C., & Stoffel, M. (2012). Glacial lakes in the Indian Himalayas-from an area-wide glacial lake inventory to onsite and modeling based risk assessment of critical glacial lakes. Science of Total Environment.  https://doi.org/10.1016/j.scitotenv.2012.11.043.CrossRefGoogle Scholar

Copyright information

© Indian Society of Remote Sensing 2019

Authors and Affiliations

  1. 1.Birbal Sahni Institute of PalaeosciencesLucknowIndia
  2. 2.Centre for Political Studies, School of Social SciencesJawaharlal Nehru UniversityNew DelhiIndia
  3. 3.State Climate Change CellSikkim State Council of Science and TechnologyGangtokIndia
  4. 4.Indian Institute of Remote SensingDehradunIndia
  5. 5.Department of GeologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations