Advertisement

Classification of Urban Hyperspectral Remote Sensing Imagery Based on Optimized Spectral Angle Mapping

  • Yu Liu
  • Shan LuEmail author
  • Xingtong Lu
  • Zheyi Wang
  • Chun Chen
  • Hongshi He
Research Article
  • 12 Downloads

Abstract

Hyperspectral remote sensing imagery provides highly precise spectral information. Thus, it is suitable for the land use classification of urban areas that are composed of complicated structures. In this study, a new spectral angle and vector mapping (SAVM) classification method, which adds a factor based on “the differences in the spectral vector lengths” among image pixels to the spectral angle mapping (SAM) classification method, is proposed. The SAM and SAVM methods were applied to classify the aerial hyperspectral digital imagery collection experiment imagery acquired from the business district of Washington, DC, USA. The results demonstrated that the overall classification accuracy of the SAM was 64.29%, with a Kappa coefficient of 0.57, while the overall classification accuracy of the SAVM was 81.06%, with a Kappa coefficient of 0.76. The overall classification accuracy was improved by 16.77% by the SAVM, indicating that the use of a SAVM classification method that considers both the spectral angle between the reference spectrum and the test spectrum and the differences in the spectral vector lengths among image pixels can improve the classification accuracy of urban area with hyperspectral remote sensing imagery.

Keywords

Hyperspectral imagery Classification Spectral angle mapping (SAM) Spectral angle and vector mapping (SAVM) 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Project (2016YFA0602301), the Jilin Provincial Science and Technology Development Project (20180101313JC), and the National Natural Science Foundation of China (41001258, 41671347).

References

  1. Bruske, J., & Sommer, G. (1998). Intrinsic dimensionality estimation with optimally topology preserving maps. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(5), 572–575.CrossRefGoogle Scholar
  2. Chang, C. (2007). Hyperspectral data exploitation: Theory and applications. Hoboken: Wiley.CrossRefGoogle Scholar
  3. Cho, M. A., Debba, P., Mathieu, R., Naido, L., Aardt, J. V., & Asner, G. P. (2010). Improving discrimination of savanna tree species through a multiple-endmember spectral angle mapper approach: Canopy-level analysis. IEEE Transactions on Geoscience and Remote Sensing, 48(11), 4133–4142.Google Scholar
  4. De Carvalho, O. A., & Meneses, P. R. (2000). Spectral correlation mapper (SCM): An improvement on the spectral angle mapper (SAM). In Summaries of the 9th JPL airborne earth science workshop (vol. 9, 00–18). JPL Publication, Pasadena.Google Scholar
  5. Dundar, M. M., & Landgrebe, D. A. (2004). Toward an optimal supervised classifier for the analysis of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 42(1), 271–277.CrossRefGoogle Scholar
  6. Dell’Acqua F., Gamba, P., & Ferrari, A. (2003). Exploiting spectral and spatial information for classifying hyperspectral data in urban areas. In Geoscience and remote sensing symposuim igarss proceedings IEEE International (vol. 1), Toulouse, France.Google Scholar
  7. Guo, B., Gunn, S. R., Damper, R. I., & Nelson, J. D. B. (2006). Band selection for hyperspectral image classification using mutual information. IEEE Geoscience and Remote Sensing Letters, 3(4), 522–526.CrossRefGoogle Scholar
  8. Harsanyi, J. C., & Chang, C. (1994). Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach. IEEE Transactions on Geoscience and Remote Sensing, 32(4), 779–785.CrossRefGoogle Scholar
  9. Hughes, G. F. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 14(1), 55–63.CrossRefGoogle Scholar
  10. Keshava, N., & Mustard, J. F. (2002). Spectral unmixing. IEEE Signal Processing Magazine, 19(1), 44–57.CrossRefGoogle Scholar
  11. Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J., et al. (1993). The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44(2–3), 145–163.CrossRefGoogle Scholar
  12. Kumar, S., Ghosh, J., & Crawford, M. M. (2002). Hierarchical fusion of multiple classifiers for hyperspectral data analysis. Pattern Analysis and Applications, 5(2), 210–220.CrossRefGoogle Scholar
  13. Kuo, B. C., & Landgrebe, D. A. (2002a). A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2486–2494.CrossRefGoogle Scholar
  14. Kuo, B. C., & Landgrebe, D. A. (2002b). A covariance estimator for small size classification problems and its application to feature extraction. IEEE Transactions on Geoscience and Remote Sensing, 40(4), 814–819.CrossRefGoogle Scholar
  15. Lu, S., Oki, K., Shimizu, Y., & Omasa, K. (2007). Comparison between several feature extraction/classification methods for mapping complicated agricultural land use patches using airborne hyperspectral data. International Journal of Remote Sensing, 28(5), 963–984.CrossRefGoogle Scholar
  16. Plaza, A., Atli Benediktsson, J., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., et al. (2009). Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment, 113(9), S110–S122.CrossRefGoogle Scholar
  17. Plaza, A., Martinez, P., Perez, R. M., & Plaza, J. (2004). A new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles. Pattern Recognition, 37(6), 1097–1116.CrossRefGoogle Scholar
  18. Sing, H. A. (1989). Review article digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6), 989–1003.CrossRefGoogle Scholar
  19. Sohn, Y., & Rebello, N. S. (2002). Supervised and unsupervised spectral angel classifiers. Photogrammetric Engineering and Remote Sensing, 68(12), 1271–1280.Google Scholar
  20. Varshney, P. K., & Arora, M. K. (2004). Advanced image processing techniques for remotely sensed hyperspectral data. Berlin: Springer.CrossRefGoogle Scholar
  21. Wang, K., Yong, B., Gu, X., Xiao, P., & Zhang, X. (2015). Spectral similarity measure using frequency spectrum for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 12(1), 130–134.CrossRefGoogle Scholar

Copyright information

© Indian Society of Remote Sensing 2019

Authors and Affiliations

  • Yu Liu
    • 1
    • 2
  • Shan Lu
    • 1
    Email author
  • Xingtong Lu
    • 3
  • Zheyi Wang
    • 1
  • Chun Chen
    • 1
  • Hongshi He
    • 1
    • 4
  1. 1.School of Geographical SciencesNortheast Normal UniversityChangchunChina
  2. 2.The United Graduated School of Agricultural SciencesEhime UniversityMatsuyamaJapan
  3. 3.Graduate School of Agricultural and Life SciencesThe university of TokyoBunkyo-kuJapan
  4. 4.School of Natural ResourcesUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations