Polygonal Impact Craters in the Thaumasia Minor, Mars: Role of Pre-existing Faults in Their Formation

  • Dipayan Dasgupta
  • Abhik KunduEmail author
  • Keyur De
  • Nilanjan Dasgupta
Research Article


Terrestrial planets, dwarf planets and moons (natural satellites) in the solar system have undergone meteoric impacts since their formation. The craters formed due to such impacts may show various geometric shapes. Formation of impact craters that are polygonal in shape is controlled by the presence of pre-existing tectonic features in the area of impact. Thaumasia Minor, the easternmost part of Thaumasia Planum of Mars, has ~ E–W-trending grabens and ~ N–S-trending wrinkle ridges, similar to the rest of Thaumasia Planum. The massive weight of the Tharsis Montes, lying to the northwest of Thaumasia, is considered as the primary cause for the extensional and compressional fractures developed in multiple temporal phases throughout the geological history of Mars. Five such polygonal impact craters in the southern Thaumasia Minor were compared with the visible expressions of tectonic planes in the region. The straight segments of the craters are also used as a proxy to reveal the presence and possible orientations of buried weak planes in the region.


Polygonal impact crater Wrinkle ridge Graben Pre-existing faults Fault reactivation 



A. Kundu, N. Dasgupta and D. Dasgupta acknowledge a research Grant (DOS Sanction Order No.: No. B.19013/10/2016-Sec.2) under MOM-AO program of the Space Science Program Office, Indian Space Research Organisation.


  1. Aittola, M., Öhman, T., Leitner, J. J., Kostama, V. P., & Raitala, J. (2010). The structural control of venusian polygonal impact craters. Icarus, 205(2), 356–363.CrossRefGoogle Scholar
  2. Aittola, M., Öhman, T., Leitner, J. J., & Raitala, J. (2007). The characteristics of polygonal impact craters on Venus. Earth, Moon and Planets, 101(1–2), 41–53.CrossRefGoogle Scholar
  3. Anderson, R. C., Dohm, J. M., Golombek, M. P., Haldemann, A. F., Franklin, B. J., Tanaka, K. L., et al. (2001). Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. Journal of Geophysical Research: Planets, 106(E9), 20563–20585.CrossRefGoogle Scholar
  4. Andrews-Hanna, J. C. (2012). The formation of Valles Marineris: 2. Stress focusing along the buried dichotomy boundary. Journal of Geophysical Research, Planets, 117(E4).Google Scholar
  5. Arya, A. S., Sarkar, S. S., Srinivas, A. R., Moorthi, S. M., Patel, V. D., Singh, R. B., et al. (2015). Mars Colour Camera: The payload characterization/calibration and data analysis from Earth imaging phase. Current Science, 00113891, 109(6).Google Scholar
  6. Baker, V. R. (1981). The geomorphology of Mars. Progress in Physical Geography, 5(4), 473–513.CrossRefGoogle Scholar
  7. Baker, V. R., Maruyama, S., & Dohm, J. M. (2007). Tharsis super plume and the geological evolution of early Mars. In Super plumes: Beyond plate tectonics (pp. 507–522). Dordrecht: Springer.Google Scholar
  8. Bouley, S., Baratoux, D., Paulien, N., Missenard, Y., & Saint-Bézar, B. (2018). The revised tectonic history of Tharsis. Earth and Planetary Science Letters, 488, 126–133.CrossRefGoogle Scholar
  9. Carr, M. H. (1973). Volcanism on mars. Journal of Geophysical Research, 78(20), 4049–4062.CrossRefGoogle Scholar
  10. Christensen, P. R., Jakosky, B. M., Kieffer, H. H., Malin, M. C., McSween, H. Y., Nealson, K., et al. (2004). The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission. Space Science Reviews, 110(1–2), 85–130.CrossRefGoogle Scholar
  11. Cole, H. M., & Andrews-Hanna, J. C. (2017). The anatomy of a wrinkle ridge revealed in the wall of Melas Chasma, Mars. Journal of Geophysical Research: Planets, 122(5), 889–900.Google Scholar
  12. Dahlstrom, C. D. A. (1969). Balanced cross sections. Canadian Journal of Earth Sciences, 6(4), 743–757.CrossRefGoogle Scholar
  13. De, K., Dasgupta, N., & Kundu, A. (2018). A statistical approach to decipher the tectonic control on the geometry of Martian channels: Case study from Pyrrhae Fossae, Noachis Terra, Mars. Planetary and Space Science, 164, 174–183.CrossRefGoogle Scholar
  14. Epard, J. L., & Groshong, R. H., Jr. (1993). Excess area and depth to detachment. AAPG Bulletin, 77(8), 1291–1302.Google Scholar
  15. Eppler, D. T., Ehrlich, R., Nummedal, D., & Schultz, P. H. (1983). Sources of shape variation in lunar impact craters: Fourier shape analysis. Geological Society of America Bulletin, 94(2), 274–291.CrossRefGoogle Scholar
  16. Fulmer, C. V., & Roberts, W. A. (1963). Rock induration and crater shape. Icarus, 2, 452–465.CrossRefGoogle Scholar
  17. Garvin, J. B., Sakimoto, S. E. H., & Frawley, J. J. (2003). Craters on Mars: Global geometric properties from gridded MOLA topography (abstract #3277). In 6th International conference on Mars. Google Scholar
  18. Graser, A., & Olaya, V. (2015). Processing: A python framework for the seamless integration of geoprocessing tools in QGIS. ISPRS International Journal of Geo-Information, 4(4), 2219–2245.CrossRefGoogle Scholar
  19. Halevy, I., & Head, J. W., III. (2014). Episodic warming of early Mars by punctuated volcanism. Nature Geoscience, 7(12), 865.CrossRefGoogle Scholar
  20. Jaumann, R., Neukum, G., Behnke, T., Duxbury, T. C., Eichentopf, K., Flohrer, J., et al. (2007). The high-resolution stereo camera (HRSC) experiment on Mars Express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planetary and Space Science, 55(7–8), 928–952.CrossRefGoogle Scholar
  21. Kring, D. A., & Cohen, B. A. (2002). Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga. Journal of Geophysical Research, Planets, 107(E2).Google Scholar
  22. Malin, M. C., Bell, J. F., Cantor, B. A., Caplinger, M. A., Calvin, W. M., Clancy, R. T., et al. (2007). Context camera investigation on board the Mars Reconnaissance Orbiter. Journal of Geophysical Research, Planets, 112(E5).Google Scholar
  23. Montgomery, D. R., Som, S. M., Jackson, M. P., Schreiber, B. C., Gillespie, A. R., & Adams, J. B. (2009). Continental-scale salt tectonics on Mars and the origin of Valles Marineris and associated outflow channels. Geological Society of America Bulletin, 121(1–2), 117–133.Google Scholar
  24. Mueller, K., & Golombek, M. (2004). Compressional structures on Mars. Annual Review of Earth and Planetary Sciences, 32, 435–464.CrossRefGoogle Scholar
  25. Öhman, T., Aittola, M., Kostama, V. P., Hyvärinen, M., & Raitala, J. (2006). Polygonal impact craters in the Argyre region, Mars: Evidence for influence of target structure on the final crater morphology. Meteoritics & Planetary Science, 41(8), 1163–1173.CrossRefGoogle Scholar
  26. Öhman, T., Aittola, M., Kostama, V. P., & Raitala, J. (2005). The preliminary analysis of polygonal impact craters within greater Hellas region, Mars. In Impact tectonics (pp. 131–160). Berlin: Springer.Google Scholar
  27. Öhman, T., Aittola, M., Kostama, V. P., Raitala, J., & Korteniemi, J. (2008). Polygonal impact craters in Argyre region, Mars: Implications for geology and cratering mechanics. Meteoritics & Planetary Science, 43(10), 1605–1628.CrossRefGoogle Scholar
  28. Peterson, G., Johnson, C., Byrne, P. K., Phillips, R. J., & Neumann, G. A. (2016), February. Depth of faulting in Mercury’s northern Hemisphere from Lobate Scarp Morphology. In AGU Fall Meeting Abstracts. Google Scholar
  29. Pike R. (1980). Control of crater morphology by gravity and target type: Mars, Earth, Moon. In Proceedings, 11th lunar and planetary science conference (pp. 2159–2189).Google Scholar
  30. Ruj, T., Komatsu, G., Pasckert, J. H., Dohm, J. M. (2018). Timings of early crustal activity in southern highlands of Mars: Periods of crustal stretching and shortening. Geoscience Frontiers. Scholar
  31. Schultz, P. H. (1976). Moon morphology. Austin: University of Texas Press.Google Scholar
  32. Smith, D. E., Zuber, M. T., Frey, H. V., Garvin, J. B., Head, J. W., Muhleman, D. O., et al. (2001). Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. Journal of Geophysical Research: Planets, 106(E10), 23689–23722.CrossRefGoogle Scholar
  33. Tanaka, K. L., Skinner Jr, J. A., Dohm, J. M., Irwin, III, R. P., Kolb, E. J., Fortezzo, C. M., Platz, T., Michael, G. G., & Hare, T. M. (2014). Geologic map of Mars. U.S. Geol. Surv. Sci. Invest. Map, 3292, scale 1:20,000,000.
  34. Watters, T. R. (2004). Elastic dislocation modeling of wrinkle ridges on Mars. Icarus, 171(2), 284–294.CrossRefGoogle Scholar
  35. Williams, N. R., Shirzaei, M., Bell III, J. F., & Watters, T. R. (2015). December. Inverse modelling of wrinkle ridge structures on the Moon and Mars. In AGU Fall Meeting Abstracts. Google Scholar

Copyright information

© Indian Society of Remote Sensing 2018

Authors and Affiliations

  • Dipayan Dasgupta
    • 1
  • Abhik Kundu
    • 1
    Email author
  • Keyur De
    • 1
    • 2
  • Nilanjan Dasgupta
    • 2
  1. 1.Asutosh CollegeKolkataIndia
  2. 2.Presidency UniversityKolkataIndia

Personalised recommendations