Advertisement

BaDAM Toolbox: A GIS-Based Approach for Automated Drainage Basin Morphometry

  • Chinu JoseEmail author
  • Jobin Thomas
  • V. Prasannakumar
  • Rajesh Reghunath
Research Article
  • 42 Downloads

Abstract

Basin-wise DEM-based Automated Morphometry (BaDAM) toolbox, an automated solution for drainage basin morphometric analysis, is presented in this paper. The toolbox, being scripted in Python, can be easily integrated with ArcGIS 10.0 version, and customizations can be implemented effortlessly. The BaDAM toolbox has been tested for computation of morphometric attributes of a tropical river basin in Kerala (India) using SRTM DEM (30 m), and the analysis was carried out successfully with less time complexity and with significant efficiency. Further, the results of the DEM-based morphometric analysis generated by the toolbox showed good agreement with the results of a previous study using SRTM data for the same river basin. It is suggested that the toolbox, which takes care of most of the inherent limitations of the existing programs/tools, can be used for DEM-based basin morphometric analysis for generating comparatively quicker and accurate results.

Keywords

Basin morphometry DEM Python ArcGIS toolbox 

References

  1. Abboud, I. A., & Nofal, R. A. (2017). Morphometric analysis of wadi Khumal basin, western coast of Saudi Arabia, using remote sensing and GIS techniques. Journal of African Earth Sciences, 126, 58–74.  https://doi.org/10.1016/j.jafrearsci.2016.11.024.CrossRefGoogle Scholar
  2. Ahmed, S. A., Chandrashekarappa, K. N., Raj, S. K., Nischitha, V., & Kavitha, G. (2010). Evaluation of morphometric parameters derived from ASTER and SRTM DEM: A study on Bandihole subwatershed basin in Karnataka. Journal of Indian Society of Remote Sensing, 38, 227–238.  https://doi.org/10.1007/s12524-010-0029-3.CrossRefGoogle Scholar
  3. Al-Saady, Y. I., Al-Suhail, Q. A., Al-Tawash, B. S., & Othman, A. A. (2016). Drainage network extraction and morphometric analysis using remote sensing and GIS mapping techniques (Lesser Zab River Basin, Iraq and Iran). Environmental Earth Sciences, 75, 1243.  https://doi.org/10.1007/s12665-016-6038-y.CrossRefGoogle Scholar
  4. Angillieri, M. Y. E., & Perucca, L. P. (2014). Geomorphology and morphometry of the de La Flecha river basin, San Juan, Argentina. Environmental Earth Sciences, 72, 3227–3237.  https://doi.org/10.1007/s12665-014-3227-4.CrossRefGoogle Scholar
  5. Apaydin, H., Ozturk, F., Merdun, H., & Aziz, N. M. (2006). Determination of the drainage basin characteristics using vector GIS. Nordic Hydrology, 37, 129–142.CrossRefGoogle Scholar
  6. Avena, G. C., Giuliano, G., & Lupia, P. E. (1967). Sulla valutazione quantitativa della gerarchizzazione ed evoluzione dei reticoli fluviali [On the quantitative evaluation of the hierarchy and evolution of river networks]. Bollettino della Societa Geologica Italiana 86, 781–796 (in Italian).Google Scholar
  7. Avena, G. C., & LupiaPalmieri, E. (1969). Analisi geomorfica quantitativa, Idrogeologia dell’alto bacino del Liri (Appennino Centrale) [Quantitative geomorphic analysis, hydrogeology of the upper Liri basin (Central Apennines)]. Geologica Romana, 8, 319–378. [in Italian].Google Scholar
  8. Bahrami, S. (2013). Analyzing the drainage system anomaly of Zagros basins: Implications for active tectonics. Tectonophysics, 608, 914–928.  https://doi.org/10.1016/j.tecto.2013.07.026.CrossRefGoogle Scholar
  9. Barnes, R., Lehman, C., & Mulla, D. (2014). An efficient assignment of drainage direction over flat surfaces in raster digital elevation models. Computers & Geosciences, 62, 128–135.  https://doi.org/10.1016/j.cageo.2013.01.009.CrossRefGoogle Scholar
  10. Chorley, R. J., Malm, D. E. G., & Pogorzelski, H. A. (1957). A new standard for estimating basin shape. American Journal of Science, 255, 138–141.  https://doi.org/10.2475/ajs.255.2.138.CrossRefGoogle Scholar
  11. Das, S., Patel, P. P., & Sengupta, S. (2016). Evaluation of different digital elevation models for analyzing drainage morphometric parameters in a mountainous terrain: a case study of the Supin-Upper Tons Basin, Indian Himalayas. SpringerPlus, 5, 1544.  https://doi.org/10.1186/s40064-016-3207-0.CrossRefGoogle Scholar
  12. Dinesh, A. C., Markose, V. J., & Jayappa, K. S. (2012). Bearing, azimuth and drainage (bAd) calculator: a new GIS supported tool for quantitative analyses of drainage networks and watershed parameters. Computers & Geosciences, 48, 67–72.  https://doi.org/10.1016/j.cageo.2012.05.016.CrossRefGoogle Scholar
  13. ESRI. (2011). Arc hydro tools—Tutorial, version 2. New York: Environmental Systems Research Institute.Google Scholar
  14. Gravelius, H. (1914). Grundriβ der gesamten Gewasserkunde. Band I: Fluβkunde (Compendium of Hydrology, Vol. I. Rivers), Goschen, Berlin, p. 179 (in German).Google Scholar
  15. Gregory, K. J., & Walling, D. E. (1973). Drainage basin form and process: A geomorphological approach (p. 456). London: Edward Arnold.Google Scholar
  16. Guarnieri, P., & Pirrotta, C. (2008). The response of drainage basins to the late Quaternary tectonics in the Sicilian side of the Messina Strait (NE Sicily). Geomorphology, 95, 260–273.  https://doi.org/10.1016/j.geomorph.2007.06.013.CrossRefGoogle Scholar
  17. Guth, P. L. (2011). Drainage basin morphometry: A global snapshot from the shuttle radar topography mission. Hydrology and Earth System Sciences, 15, 2091–2099.  https://doi.org/10.5194/hess-15-2091-2011.CrossRefGoogle Scholar
  18. Harvey, C. A., & Eash, D. A. (1996). Description, instructions, and verification for Basinsoft: A computer program to quantify drainage-basin characteristics. USGS Water Resources Investigations Report No. 95-4287, United States Geological Survey, Iowa City, IA, p. 25.Google Scholar
  19. Horton, R. E. (1932). Drainage basin characteristics. Transactions of American Geophysics Union, 13, 350–361.CrossRefGoogle Scholar
  20. Horton, R. E. (1945). Erosional development of streams and their drainage basins—hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56, 275–370.  https://doi.org/10.1130/0016-7606(1945)56%5b275:EDOSAT%5d2.0.CO;2.CrossRefGoogle Scholar
  21. Hou, K., Sun, J., Yang, W., Sun, T., Wang, Y., & Ma, S. (2011). Automatic extraction of drainage networks from DEMs base on heuristic search. Journal of Software, 6, 1611–1618.  https://doi.org/10.4304/jsw.6.8.1611-1618.CrossRefGoogle Scholar
  22. Jasiewicz, J., & Metz, M. (2011). A new GRASS GIS toolkit for Hortonian analysis of drainage networks. Computers & Geosciences, 37, 1162–1173.  https://doi.org/10.1016/j.cageo.2011.03.003.CrossRefGoogle Scholar
  23. Jena, S. K., & Tiwari, K. N. (2006). Modeling synthetic unit hydrograph parameters with geomorphologic parameters of watersheds. Journal of Hydrology, 319, 1–14.  https://doi.org/10.1016/j.jhydrol.2005.03.025.CrossRefGoogle Scholar
  24. Jenson, S. K. (1991). Applications of hydrologic information automatically extracted from digital elevation models. Hydrological Processes, 5, 31–44.  https://doi.org/10.1002/hyp.3360050104.CrossRefGoogle Scholar
  25. Jenson, S. K., & Domingue, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54, 1593–1600.Google Scholar
  26. Lin, W. T., Chou, W. C., Lin, C. Y., Huang, P. H., & Tsai, J. S. (2008). WinBasin: using improved algorithms and the GIS technique for automated watershed modelling analysis from digital elevation models. International Journal of Geographical Information Science, 22, 47–69.  https://doi.org/10.1080/13658810701300121.CrossRefGoogle Scholar
  27. Lindsay, J. B., & Creed, I. F. (2005). Removal of artefact depressions from digital elevation models: towards a minimum impact approach. Hydrological Processes, 19, 3113–3126.  https://doi.org/10.1002/hyp.5835.CrossRefGoogle Scholar
  28. Lindsay, J. B., & Evans, M. G. (2008). The influence of elevation error on the morphometrics of channel networks extracted from DEMs and the implications for hydrological modelling. Hydrological Processes, 22, 1588–1603.  https://doi.org/10.1002/hyp.6728.CrossRefGoogle Scholar
  29. Magesh, N. S., Chandrasekar, N., & Kaliraj, S. (2012). A GIS based automated extraction tool for the analysis of basin morphometry. Bonfring International Journal of Industrial Engineering and Management Science, 2, 32–35.Google Scholar
  30. Markose, V. J., Dinesh, A. C., & Jayappa, K. S. (2014). Quantitative analysis of morphometric parameters of Kali River basin, southern India, using bearing azimuth and drainage (bAd) calculator and GIS. Environmental Earth Sciences, 72, 2887–2903.  https://doi.org/10.1007/s12665-014-3193-x.CrossRefGoogle Scholar
  31. Martz, L. W., & Garbrecht, J. (1998). The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models. Hydrological Processes, 12, 843–855.  https://doi.org/10.1002/(SICI)1099-1085(199805)12:6%3c843:AID-HYP658%3e3.0.CO;2-R.CrossRefGoogle Scholar
  32. Martz, L. W., & Garbrecht, J. (1999). An outlet breaching algorithm for the treatment of closed depressions in a raster DEM. Computers & Geosciences, 25, 835–844.  https://doi.org/10.1016/S0098-3004(99)00018-7.CrossRefGoogle Scholar
  33. Mather, R. M. (1972). Areal classification in geomorphology. In R. J. Chorley (Ed.), Spatial analysis in geomorphology (pp. 305–322). London: Methuen.Google Scholar
  34. Melton, M. A. (1957). An analysis of the relations among elements of climate, surface properties and geomorphology. Office of Naval Research, Geography Branch, Project NR 389-042, Technical Report 11, Columbia University, p. 102.Google Scholar
  35. Melton, M. A. (1958). Geometric properties of mature drainage systems and their representation in an E4 phase space. Journal of Geology, 66, 35–54.CrossRefGoogle Scholar
  36. Melton, M. A. (1965). The geomorphic and paleoclimatic significance of alluvial deposits in Southern Arizona. The Journal of Geology, 73, 1–38.CrossRefGoogle Scholar
  37. Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain Area, Virginia and Tennessee. Office of Naval Research, Technical Report 3, Department of Geology, Columbia University, New York, p. 51.Google Scholar
  38. Nardi, F., Grimaldi, S., Santini, M., Petroselli, A., & Ubertini, L. (2008). Hydrogeomorphic properties of simulated drainage patterns using digital elevation models: the flat area issue. Hydrological Sciences Journal, 53, 1176–1193.  https://doi.org/10.1623/hysj.53.6.1176.CrossRefGoogle Scholar
  39. O’Callaghan, J. F., & Mark, D. M. (1984). The extraction of drainage networks from digital elevation data. Computer Graphics and Image Processing, 28, 323–344.  https://doi.org/10.1016/S0734-189X(84)80011-0.CrossRefGoogle Scholar
  40. O’Donnell, G., Nijssen, B., & Lettenmaier, D. P. (1999). A simple algorithm for generating streamflow networks for grid-based, macroscale hydrological models. Hydrological Processes, 13, 1269–1275.  https://doi.org/10.1002/(SICI)1099-1085(19990615)13:8%3c1269:AID-HYP806%3e3.0.CO;2-R.CrossRefGoogle Scholar
  41. Patton, P. C., & Baker, V. R. (1976). Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resources Research, 12, 941–952.CrossRefGoogle Scholar
  42. Pike, R. J., & Wilson, S. E. (1971). Elevation–relief ratio, hypsometric integral and geomorphic area–altitude analysis. Geological Society of America Bulletin, 82, 1079–1084.  https://doi.org/10.1130/0016-7606(1971)82%5b1079:ERHIAG%5d2.0.CO;2.CrossRefGoogle Scholar
  43. Prabhakaran, A., & Raj, N. J. (2018). Drainage morphometric analysis for assessing form and processes of the watersheds of Pachamalai hills and its adjoinings, Central Tamil Nadu, India. Applied Water Science, 8, 31.  https://doi.org/10.1007/s1320.CrossRefGoogle Scholar
  44. Preeja, K. R., Joseph, S., Thomas, J., & Vijith, H. (2011). Identification of groundwater potential zones of a tropical river basin (Kerala, India) using remote sensing and GIS techniques. Journal of Indian Society of Remote Sensing, 39, 83–94.  https://doi.org/10.1007/s12524-011-0075-5.CrossRefGoogle Scholar
  45. Quinn, P., Beven, K., Chevallier, P., & Planchon, O. (1991). The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrological Processes, 5(59–80), 1991.  https://doi.org/10.1002/hyp.3360050106.CrossRefGoogle Scholar
  46. Rai, P. K., Mishra, V. N., & Mohan, K. (2017a). A study of morphometric evaluation of the Son basin, India using geospatial approach. Remote Sensing Applications: Society and Environment, 7, 9–20.  https://doi.org/10.1016/j.rsase.2017.05.001.CrossRefGoogle Scholar
  47. Rai, P. K., Mohan, K., Mishra, S., Ahmad, A., & Mishra, V. N. (2017b). A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India. Applied Water Science, 7, 217.  https://doi.org/10.1007/s13201-014-0238-y.CrossRefGoogle Scholar
  48. Romshoo, S. A., Bhat, S. A., & Rashid, I. (2012). Geoinformatics for assessing the morphometric control on hydrological response at watershed scale in the Upper Indus Basin. Journal of Earth System Science, 121, 659–686.  https://doi.org/10.1007/s12040-012-0192-8.CrossRefGoogle Scholar
  49. Scheidegger, A. E. (1991). Theoretical geomorphology (p. 434). London: Springer.CrossRefGoogle Scholar
  50. Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67, 597–646.  https://doi.org/10.1130/0016-7606(1956)67%5b597:EODSAS%5d2.0.CO;2.CrossRefGoogle Scholar
  51. Simons, D. B., Li, R. M., Duong, N., Kouwen, N., Ponce, V. M., Richardson, E. V., et al. (1980). Watershed and stream mechanics (p. 855). Washington DC: USDA Soil Conservation Service.Google Scholar
  52. Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248, 655–668.  https://doi.org/10.2475/ajs.248.9.655.CrossRefGoogle Scholar
  53. Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63, 1117–1142.  https://doi.org/10.1130/0016-7606(1952)63%5b1117:HAAOET%5d2.0.CO;2.CrossRefGoogle Scholar
  54. Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions of American Geophysics Union, 38, 913–920.  https://doi.org/10.1029/TR038i006p00913.CrossRefGoogle Scholar
  55. Strahler, A. N. (1958). Dimensional analysis applied to fluvially eroded landforms. Geological Society of America Bulletin, 69, 279–300.  https://doi.org/10.1130/0016-7606(1958)69%5b279:DAATFE%5d2.0.CO;2.CrossRefGoogle Scholar
  56. Strahler, A. N. (1964). Quantitative geomorphology of drainage basin and channel networks. In V. T. Chow (Ed.), Handbook of applied hydrology (pp. 4–76). New York: McGraw Hill.Google Scholar
  57. Tarboton, D. G., Bras, R. L., & Rodriguez-Iturbe, I. (1991). On the extraction of channel networks from digital elevation data. Hydrological Processes, 5, 81–100.  https://doi.org/10.1002/hyp.3360050107.CrossRefGoogle Scholar
  58. Tarboton, D. G., Sazib, N., & Dash, P. (2015). TauDEM 5.3—Quick start guide to using the TauDEM ArcGIS toolbox. http://hydrology.usu.edu/taudem/taudem5/documentation.html. Accessed 29 July 2018.
  59. Thomas, J., Joseph, S., & Thrivikramaji, K. P. (2010). Morphometric aspects of a small tropical mountain river system, the southern Western Ghats, India. International Journal of Digital Earth, 3, 135–156.  https://doi.org/10.1080/17538940903464370.CrossRefGoogle Scholar
  60. Thomas, J., Joseph, S., Thrivikramji, K. P., & Abe, G. (2011). Morphometric analysis of the drainage system and its hydrological implications in the rain shadow regions, Kerala, India. Journal of Geographical Sciences, 21, 1077–1088.  https://doi.org/10.1007/s11442-011-0901-2.CrossRefGoogle Scholar
  61. Thomas, J., Joseph, S., Thrivikramji, K. P., & Arunkumar, K. S. (2014). Sensitivity of digital elevation models: the scenario from two tropical mountain river basins of the Western Ghats, India. Geoscience Frontiers, 5, 893–909.  https://doi.org/10.1016/j.gsf.2013.12.008.CrossRefGoogle Scholar
  62. Thomas, J., & Prasannakumar, V. (2015). Comparison of basin morphometry derived from topographic maps, ASTER and SRTM DEMs: An example from Kerala, India. Geocarto International, 30, 346–364.  https://doi.org/10.1080/10106049.2014.955063.CrossRefGoogle Scholar
  63. Thomas, J., Prasannakumar, V., & Vineetha, P. (2015). Suitability of spaceborne digital elevation models of different scales in topographic analysis: an example from Kerala, India. Environmental Earth Sciences, 73, 1245–1263.  https://doi.org/10.1007/s12665-014-3478-0.CrossRefGoogle Scholar
  64. Tribe, A. (1992). Automated recognition of valley lines and drainage networks from grid digital elevation models: A review and a new method. Journal of Hydrology, 139, 263–293.  https://doi.org/10.1016/0022-1694(92)90206-B.CrossRefGoogle Scholar
  65. Turcotte, R., Fortin, J. P., Rousseau, A. N., Massicotte, S., & Villeneuve, J. P. (2001). Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network. Journal of Hydrology, 240, 225–242.  https://doi.org/10.1016/S0022-1694(00)00342-5.CrossRefGoogle Scholar
  66. Vieceli, N., Bortolin, T. A., Mendes, L. A., Bacarim, G., Cemin, G., & Schneider, V. E. (2015). Morphometric evaluation of watersheds in Caxias do Sul City, Brazil, using SRTM (DEM) data and GIS. Environmental Earth Sciences, 73, 5677–5685.  https://doi.org/10.1007/s12665-014-3823-3.CrossRefGoogle Scholar
  67. Wang, X., & Yin, Z. Y. (1998). A comparison of drainage networks derived from digital elevation models at two scales. Journal of Hydrology, 210, 221–241.  https://doi.org/10.1016/S0022-1694(98)00189-9.CrossRefGoogle Scholar
  68. Wilford, D. J., Sakals, M. E., Innes, J. L., Sidle, R. C., & Bergerud, W. A. (2004). Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides, 1, 61–66.  https://doi.org/10.1007/s10346-003-0002-0.CrossRefGoogle Scholar
  69. Williams, R. E., & Fowler, P. M. (1969). A preliminary report on an empirical analysis of drainage network adjustment to precipitation input. Journal of Hydrology, 8, 227–238.  https://doi.org/10.1016/0022-1694(69)90124-3.CrossRefGoogle Scholar
  70. Zhang, H., & Huang, G. (2009). Building channel networks for flat regions in digital elevation models. Hydrological Processes, 23, 2879–2887.  https://doi.org/10.1002/hyp.7378.CrossRefGoogle Scholar

Copyright information

© Indian Society of Remote Sensing 2018

Authors and Affiliations

  1. 1.International and Inter University Centre for Natural Resources ManagementUniversity of KeralaThiruvananthapuramIndia
  2. 2.Centre for Geo Information Science and TechnologyUniversity of KeralaThiruvananthapuramIndia

Personalised recommendations