Advertisement

A Density-Based Clustering Method for the Segmentation of Individual Buildings from Filtered Airborne LiDAR Point Clouds

  • Xiaoping Huang
  • Rujun Cao
  • Yanyan Cao
Research Article
  • 11 Downloads

Abstract

Individual building segmentation is a prerequisite for building reconstruction. When building points or building regions are classified from raw LiDAR (Light Detection and Ranging) point clouds, the dataset usually contains numerous individual buildings as well as outliers. However, the applications to segment individual buildings from large datasets require the algorithms working with the minimal requirements of domain knowledge to determine the input parameters, working well on datasets with outliers and having good efficiency on big data. To meet these requirements, this paper presents a new segmentation method relying on a density-based clustering technique that is designed to separate individual buildings in dense built-up areas and is robust to outliers. As implemented in a spatial database, the algorithm benefits from the spatial index and the parallel computation capability offered by the system. The experimental results show that the proposed method is significantly more effective in segmenting individual buildings than the well-known moving window algorithm and the new boundary identification and tracing algorithm, and processes large volumes of data with good efficiency. Compared with the moving window algorithm, the proposed method (parallelized) consumed only 17.8% time and the quality improved from 88.8 to 94.8% on the Vaihingen dataset.

Keywords

LiDAR point cloud Individual building segmentation Density-based clustering Spatial database Parallelism 

Notes

Acknowledgements

The Vaihingen dataset was provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF) (Cramer 2010): http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html (in German).

Compliance with ethical standards

Conflict of interest

No potential conflict of interest was reported by the authors.

References

  1. Awrangjeb, M. (2016). Using point cloud data to identify, trace, and regularize the outlines of buildings. International Journal of Remote Sensing, 37(3), 551–579.  https://doi.org/10.1080/01431161.2015.1131868.CrossRefGoogle Scholar
  2. Awrangjeb, M., & Fraser, C. (2014). Automatic segmentation of raw LIDAR data for extraction of building roofs. Remote Sensing, 6(5), 3716–3751.  https://doi.org/10.3390/rs6053716.CrossRefGoogle Scholar
  3. Awrangjeb, M., Zhang, C., & Fraser, C. S. (2013). Automatic extraction of building roofs using LIDAR data and multispectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 83, 1–18.  https://doi.org/10.1016/j.isprsjprs.2013.05.006.CrossRefGoogle Scholar
  4. Axelsson, P. (2000). DEM Generation from laser scanner data using TIN adaptive models. In Proceedings of XIX ISPRS Congress (pp. 110–117). Amsterdam.Google Scholar
  5. Bezdek, J. (1981). Pattern recognition with fuzzy objective function algorithms. New York: Plenum Press.CrossRefGoogle Scholar
  6. Bláha, M., Vogel, C., Richard, A., Wegner, J. D., Pock, T., & Schindler, K. (2016). Large-scale semantic 3D Reconstruction: an adaptive multi-resolution model for multi-class volumetric labeling. In 2016 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3176–3184) Las Vegas, NV, USA.  https://doi.org/10.1109/cvpr.2016.346.
  7. Brenner, C. (2005). Building reconstruction from images and laser scanning. International Journal of Applied Earth Observation and Geoinformation, 6(3–4), 187–198.  https://doi.org/10.1016/j.jag.2004.10.006.CrossRefGoogle Scholar
  8. Cao, R., Zhang, Y., Liu, X., & Zhao, Z. (2017). 3D building roof reconstruction from airborne LiDAR point clouds: A framework based on a spatial database. International Journal of Geographical Information Science, 31(7), 1359–1380.  https://doi.org/10.1080/13658816.2017.1301456.CrossRefGoogle Scholar
  9. Chen, Q., Gong, P., Baldocchi, D., & Xie, G. (2007). Filtering airborne laser scanning data with morphological methods. Photogrammetric Engineering & Remote Sensing, 73(2), 175–185.CrossRefGoogle Scholar
  10. Cheng, L., Gong, J., Li, M., & Liu, Y. (2011). 3D building model reconstruction from multi-view aerial imagery and lidar data. Photogrammetric Engineering & Remote Sensing, 77(2), 125–139.CrossRefGoogle Scholar
  11. Cramer, M. (2010). The DGPF test on digital aerial camera evaluation—overview and test design. Photogrammetrie – Fernerkundung – Geoinformation, 2010(2), 73–82.  https://doi.org/10.1127/1432-8364/2010/0041.CrossRefGoogle Scholar
  12. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B, 39(1), 1–38.Google Scholar
  13. Elberink, S. O. (2008). Problems in automated building reconstruction based on dense airborne laser scanning data. In ISRPS 2008 Beijing (pp. 93–98). Beijing.Google Scholar
  14. Ester, M., Kriegel, H., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the second international conference on knowledge discovery and data mining (KDD-96) (pp. 226–231). Portland.Google Scholar
  15. Estivill-Castro, V. (2002). Why so many clustering algorithms: a position paper. ACM SIGKDD Explorations Newsletter, 4(1), 65–75.  https://doi.org/10.1145/568574.568575.CrossRefGoogle Scholar
  16. Filin, S., & Pfeifer, N. (2006). Segmentation of airborne laser scanning data using a slope adaptive neighborhood. ISPRS Journal of Photogrammetry and Remote Sensing, 60(2), 71–80.  https://doi.org/10.1016/j.isprsjprs.2005.10.005.CrossRefGoogle Scholar
  17. Haala, N., & Claus, B. (1999). Extraction of buildings and trees in urban environments. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 130–137.  https://doi.org/10.1016/S0924-2716(99)00010-6.CrossRefGoogle Scholar
  18. Haala, N., & Kada, M. (2010). An update on automatic 3D building reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6), 570–580.  https://doi.org/10.1016/j.isprsjprs.2010.09.006.CrossRefGoogle Scholar
  19. Hellerstein, J. M., Naughton, J. F., & Pfeffer, A. (1995) Generalized search trees for database systems. In Proceedings of the 21th international conference on very large data bases (pp. 562–573). Zurich.Google Scholar
  20. Kriegel, H., Kröger, P., Sander, J., & Zimek, A. (2011). Density-based clustering. WIREs Data Mining and Knowledge Discovery, 1(3), 231–240.  https://doi.org/10.1002/widm.30.CrossRefGoogle Scholar
  21. Kwak, E., & Habib, A. (2014). Automatic representation and reconstruction of DBM from LiDAR data using recursive minimum bounding rectangle. ISPRS Journal of Photogrammetry and Remote Sensing, 93(7), 171–191.  https://doi.org/10.1016/j.isprsjprs.2013.10.003.CrossRefGoogle Scholar
  22. Lari, Z., & Habib, A. (2014). An adaptive approach for the segmentation and extraction of planar and linear/cylindrical features from laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 93(7), 192–212.  https://doi.org/10.1016/j.isprsjprs.2013.12.001.CrossRefGoogle Scholar
  23. Leberl, F., Irschara, A., Pock, T., Meixner, P., Gruber, M., Scholz, S., et al. (2010). Point clouds: Lidar versus 3D Vision. Photogrammetric Engineering & Remote Sensing, 76(10), 1123–1134.CrossRefGoogle Scholar
  24. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In L. M. Le Cam, & J. Neyman (Eds.), Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Volume 1: Statistics (pp. 281–297). CA: University of California Press.Google Scholar
  25. Meng, X., Currit, N., & Zhao, K. (2010). Ground filtering algorithms for airborne LiDAR data: A review of critical issues. Remote Sensing, 2(3), 833–860.  https://doi.org/10.3390/rs2030833.CrossRefGoogle Scholar
  26. Meng, X., Wang, L., Silván-Cárdenas, J. L., & Currit, N. (2009). A multi-directional ground filtering algorithm for airborne LIDAR. ISPRS Journal of Photogrammetry and Remote Sensing, 64(1), 117–124.  https://doi.org/10.1016/j.isprsjprs.2008.09.001.CrossRefGoogle Scholar
  27. Pingel, T. J., Clarke, K. C., & McBride, W. A. (2013). An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 77, 21–30.  https://doi.org/10.1016/j.isprsjprs.2012.12.002.CrossRefGoogle Scholar
  28. Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J. D., Breitkopf, U., & Jung, J. (2014). Results of the ISPRS benchmark on urban object detection and 3D building reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 93(7), 256–271.  https://doi.org/10.1016/j.isprsjprs.2013.10.004.CrossRefGoogle Scholar
  29. Rottensteiner, F., Trinder, J., Clode, S., & Kubik, K. (2007). Building detection by fusion of airborne laser scanner data and multi-spectral images: Performance evaluation and sensitivity analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 62(2), 135–149.  https://doi.org/10.1016/j.isprsjprs.2007.03.001.CrossRefGoogle Scholar
  30. Rouhani, M., Lafarge, F., & Alliez, P. (2017). Semantic segmentation of 3D textured meshes for urban scene analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 123, 124–139.  https://doi.org/10.1016/j.isprsjprs.2016.12.001.CrossRefGoogle Scholar
  31. Sampath, A., & Shan, J. (2007). Building boundary tracing and regularization from airborne lidar point clouds. Photogrammetric Engineering & Remote Sensing, 73(7), 805–812.  https://doi.org/10.14358/PERS.73.7.805.CrossRefGoogle Scholar
  32. Sampath, A., & Shan, J. (2010). Segmentation and reconstruction of polyhedral building roofs from aerial lidar point clouds. IEEE Transactions on Geoscience and Remote Sensing, 48(3), 1554–1567.  https://doi.org/10.1109/TGRS.2009.2030180.CrossRefGoogle Scholar
  33. Sibson, R. (1973). SLINK: An optimally efficient algorithm for the single-link cluster method. The Computer Journal, 16(1), 30–34.  https://doi.org/10.1093/comjnl/16.1.30.CrossRefGoogle Scholar
  34. Sithole, G., & Vosselman, G. (2004). Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 59(1–2), 85–101.  https://doi.org/10.1016/j.isprsjprs.2004.05.004.CrossRefGoogle Scholar
  35. Słota, M. (2015). Full-waveform data for building roof step edge localization. ISPRS Journal of Photogrammetry and Remote Sensing, 106, 129–144.  https://doi.org/10.1016/j.isprsjprs.2015.05.008.CrossRefGoogle Scholar
  36. Sohn, G., & Dowman, I. (2007). Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS Journal of Photogrammetry and Remote Sensing, 62(1), 43–63.  https://doi.org/10.1016/j.isprsjprs.2007.01.001.CrossRefGoogle Scholar
  37. Susaki, J. (2013). Knowledge-based modeling of buildings in dense urban areas by combining airborne LiDAR Data and Aerial Images. Remote Sensing, 5(11), 5944–5968.  https://doi.org/10.3390/rs5115944.CrossRefGoogle Scholar
  38. Toth, C., & Jóźków, G. (2016). Remote sensing platforms and sensors: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 22–36.  https://doi.org/10.1016/j.isprsjprs.2015.10.004.CrossRefGoogle Scholar
  39. Verma, V., R. Kumar and S. Hsu. (2006). 3D building detection and modeling from aerial LIDAR Data. In 2006 IEEE computer society conference on computer vision and pattern recognition (pp. 2213–2220) New York.  https://doi.org/10.1109/cvpr.2006.12.
  40. Vosselman, G., Coenen, M., & Rottensteiner, F. (2017). Contextual segment-based classification of airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 354–371.  https://doi.org/10.1016/j.isprsjprs.2017.03.010.CrossRefGoogle Scholar
  41. Vosselman, G., & Dijkman, E. (2001). 3D building model reconstruction from point clouds and ground plans. International Archives of Photogrammetry and Remote Sensing, XXXIV-3/W4, 37–43.Google Scholar
  42. Xiao, W., Mills, J., Guidi, G., Rodríguez-Gonzálvez, P., Barsanti, S. G., & González-Aguilera, D. (2018) Geoinformatics for the conservation and promotion of cultural heritage in support of the UN Sustainable Development Goals. In ISPRS Journal of Photogrammetry and Remote Sensing.  https://doi.org/10.1016/j.isprsjprs.2018.01.001. (in press).CrossRefGoogle Scholar
  43. Zhang, K., Yan, J., & Chen, S. C. (2006). Automatic construction of building footprints from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2523–2533.  https://doi.org/10.1109/TGRS.2006.874137.CrossRefGoogle Scholar
  44. Zhang, W., Zhao, D., & Wang, X. (2013). Agglomerative clustering via maximum incremental path integral. Pattern Recognition, 46(11), 3056–3065.  https://doi.org/10.1016/j.patcog.2013.04.013.CrossRefGoogle Scholar
  45. Zhao, Z., Duan, Y., Zhang, Y., & Cao, R. (2016). Extracting buildings from and regularizing boundaries in airborne lidar data using connected operators. International Journal of Remote Sensing, 37(4), 889–912.  https://doi.org/10.1080/01431161.2015.1137647.CrossRefGoogle Scholar
  46. Zhou, G., & Zhou, X. (2014). Seamless fusion of LiDAR and aerial imagery for building extraction. IEEE Transactions on Geoscience and Remote Sensing, 52(11), 7393–7407.  https://doi.org/10.1109/TGRS.2014.2311991.CrossRefGoogle Scholar
  47. Zhu, Q., Li, Y., Hu, H., & Wu, B. (2017). Robust point cloud classification based on multi-level semantic relationships for urban scenes. ISPRS Journal of Photogrammetry and Remote Sensing, 129, 86–102.  https://doi.org/10.1016/j.isprsjprs.2017.04.022.CrossRefGoogle Scholar

Copyright information

© Indian Society of Remote Sensing 2018

Authors and Affiliations

  1. 1.School of Information Science and TechnologyZhejiang Sci-Tech UniversityHangzhouChina
  2. 2.Hangzhou CAS Skyvitech Co. LtdHangzhouChina
  3. 3.School of Mathematics and StatisticsLanzhou UniversityLanzhouChina

Personalised recommendations