Advertisement

Assessing Metal-Induced Changes in the Visible and Near-Infrared Spectral Reflectance of Leaves: A Pot Study with Sunflower (Helianthus annuus L.)

  • Paresh H. Rathod
  • Carsten Brackhage
  • Ingo Müller
  • Freek D. Van der Meer
  • Marleen F. Noomen
Research Article

Abstract

The aim of this study was to monitor changes in leaf spectral reflectance due to phytoaccumulation of trace elements (Cd, Pb, and As) in sunflower mutant (M5 mutant line 38/R4-R6/15-35-190-04-M5) grown in spiked and in situ metal-contaminated potted soils. Reflectance spectra (350–2500 nm) of leaves were collected using portable ASD spectroradiometer, and respective leaves sample were analyzed for total metal contents. The spectral changes were quite noticeable and showed increased visible and decreased NIR reflectance for sunflower grown in soil spiked with 900 mg As kg−1, and in in situ metal-contaminated soils. These changes also involved a blue-shift feature of red-edge position in the first derivatives spectra, studied vegetation indices and continuum removed absorption features at 495, 680, 970, 1165, 1435, 1780, and 1925 nm wavelength. Correlograms of leaf-metal concentration and reflectance values show highest degrees of overall correlation for visible, near-infrared, and water-sensitive wavelengths. Partial least square and multiple linear regression statistical models (cross-validated), respectively, based on Savitzky–Golay filter first-order derivative spectra and combination of spectral feature such as vegetation indices and band depths yielded good prediction of leaf-metal concentrations.

Keywords

Metal-contaminated soils Sunflower Spectral reflectance Phytoremediation Visible and near-infrared spectroscopy 

Notes

Acknowledgements

The authors would like to acknowledge the European Commission Higher Education Program for Granting Erasmus Mundus External Cooperation Window Scholarship to support this research. Special thanks to faculties at Department of Earth System Analysis, ITC, University of Twente; at Institute of General Ecology and Conservation, Tharandt, TU Dresden; and at Saxon State Office for Environment, Agriculture and Geology, Freiberg, for their invaluable technical assistance. The authors are specially thankful to Dr. Rolf Herzig, Phytotech Foundation, Bern, Switzerland, for providing with the seeds of sunflower M5 mutant lines – M5/R4-R6/15-35-190-04-M5.

References

  1. Abdi, H. (2003). Partial least square regression (PLS regression). In Lewis-Beck, T. F. Liao, & A. Bryman (Eds.), The SAGE encyclopedia of social science research methods (Vol. 1, pp. 792–795). Thousand Oaks: Sage.Google Scholar
  2. Adesodun, J., Atayese, M., Agbaje, T. A., Osadiaye, B., Mafe, O. F., & Soretire, A. (2010). Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water, Air, and Soil Pollution, 207(1–4), 195–201.  https://doi.org/10.1007/s11270-009-0128-3.CrossRefGoogle Scholar
  3. Bandaru, V., Hansen, D. J., Codling, E. E., Daughtry, C. S., White-Hansen, S., & Green, C. E. (2010). Quantifying arsenic-induced morphological changes in spinach leaves: Implications for remote sensing. International Journal of Remote Sensing, 31(15), 4163–4177.  https://doi.org/10.1080/01431161.2010.498453.CrossRefGoogle Scholar
  4. Blackburn, G. (2007). Hyperspectral remote sensing of plant pigments. Journal of Experimental Botany, 58(4), 855–867.  https://doi.org/10.1093/jxb/erl123.CrossRefGoogle Scholar
  5. Boyd, D., Entwistle, J., Flowers, A., Armitage, R., & Goldsmith, P. (2006). Remote sensing the radionuclide contaminated Belarusian landscape: A potential for imaging spectrometry? International Journal of Remote Sensing, 27(10), 1865–1874.  https://doi.org/10.1080/01431160500328355.CrossRefGoogle Scholar
  6. Buschmann, C., & Nagel, E. (1993). In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. International Journal of Remote Sensing, 14(4), 711–722.  https://doi.org/10.1080/01431169308904370.CrossRefGoogle Scholar
  7. Clark, R. N., & Roush, T. L. (1984). Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research: Solid Earth, 89(B7), 6329–6340.  https://doi.org/10.1029/JB089iB07p06329.CrossRefGoogle Scholar
  8. Cundy, A., Bardos, R. P., Puschenreiter, M., Mench, M., Bert, V., Friesl-Hanl, W., et al. (2016). Brownfields to green fields: Realising wider benefits from practical contaminant phytomanagement strategies. Journal of Environmental Management, 184(1), 67–77.  https://doi.org/10.1016/j.jenvman.2016.03.028.CrossRefGoogle Scholar
  9. Cundy, A., Bardos, P., Puschenreiter, M., Witters, N., Mench, M., Bert, V., et al. (2015). Developing effective decision support for the application of “gentle” remediation options: The GREENLAND project. Remediation Journal, 25(3), 101–114.  https://doi.org/10.1002/rem.21435.CrossRefGoogle Scholar
  10. Curran, P. J. (1989). Remote sensing of foliar chemistry. Remote Sensing of Environment, 30(3), 271–278.  https://doi.org/10.1016/0034-4257(89)90069-2.CrossRefGoogle Scholar
  11. Curran, P. J., Dungan, J. L., Macler, B. A., Plummer, S. E., & Peterson, D. L. (1992). Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration. Remote Sensing of Environment, 39(2), 153–166.  https://doi.org/10.1016/0034-4257(92)90133-5.CrossRefGoogle Scholar
  12. Curran, P. J., Dungan, J. L., & Peterson, D. L. (2001). Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies. Remote Sensing of Environment, 76(3), 349–359.  https://doi.org/10.1016/S0034-4257(01)00182-1.CrossRefGoogle Scholar
  13. Cuypers, A., Smeets, K., & Vangronsveld, J. (2009). Heavy metal stress in plants. In H. Hirt (Ed.), Plant Stress Biology: From Genomics to Systems Biology (pp. 161–178). KGaA, Weinheim: Wiley-VCH.  https://doi.org/10.1002/9783527628964.ch8.CrossRefGoogle Scholar
  14. de Gandy, Y. P. P. (2010). Spectral reflectance as an indicator of foliar concentrations of arsenic in common sunflower (Helianthus Annuus). M.S. dissertation No. 1488735. Department of Chemistry, University of Texas-Pan American.Google Scholar
  15. Dorigo, W., Bachmann, M., & Heldens, W. (2006). AS toolbox and processing of field spectra: Use’s manual, Version 1.13. Wessling: German Aerospace Center (DLR), German Remote Sensing Data Center, Institute for Environment and Geo-information Team Imaging Spectroscopy.Google Scholar
  16. Font, R., del Río-Celestino, M., & de Haro-Bailón, A. (2007). Near-infrared reflectance spectroscopy: Methodology and potential for predicting trace elements in plants. In N. Willey (Ed.), Phytoremediation, methods and reviews (Vol. 23). Totowa, NJ: Humana Press Inc.Google Scholar
  17. Gallego, S. M., Benavides, M. P., & Tomaro, M. L. (1996). Effect of heavy metal ion excess on sunflower leaves: Evidence for involvement of oxidative stress. Plant Science, 121, 151–159.  https://doi.org/10.1016/S0168-9452(96)04528-1.CrossRefGoogle Scholar
  18. Garg, N., & Singla, P. (2011). Arsenic toxicity in crop plants: Physiological effects and tolerance mechanisms. Environmental Chemistry Letters, 9(3), 303–321.  https://doi.org/10.1007/s10311-011-0313-7.CrossRefGoogle Scholar
  19. Gitelson, A. A., & Merzlyak, M. N. (1996). Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology, 148(3), 494–500.  https://doi.org/10.1016/S0176-1617(96)80284-7.CrossRefGoogle Scholar
  20. Götze, C., Jung, A., Merbach, I., Wennrich, R., & Gläßer, C. (2010). Spectrometric analyses in comparison to the physiological condition of heavy metal stressed floodplain vegetation in a standardised experiment. Open Gioscience (Formerly Central European Journal of Geosciences), 2(2), 132–137.  https://doi.org/10.2478/v10085-010-0002-y.CrossRefGoogle Scholar
  21. Herzig, R., Nehnevajova, E., Pfistner, C., Schwitzguebel, J.-P., Ricci, A., & Keller, C. (2014). Feasibility of labile Zn phytoextraction using enhanced tobacco and sunflower: Results of five-and one-year field-scale experiments in Switzerland. International Journal of Phytoremediation, 16, 735–754.  https://doi.org/10.1080/15226514.2013.856846.CrossRefGoogle Scholar
  22. Hong, H., Feng-jie, Y., Guang-zhu, Z., & Yin-ming, L. (2010). Spectral features and regression model of mine vegetation in the press of heavy metal. In Second International Workshop on Education Technology and Computer Science (pp. 57–59). IEEE.  https://doi.org/10.1109/etcs.2010.398.
  23. Horler, D. N. H., Barber, J., & Barringer, A. R. (1980). Effects of heavy metals on the absorbance and reflectance spectra of plants. International Journal of Remote Sensing, 1, 121–136.  https://doi.org/10.1080/01431168008547550.CrossRefGoogle Scholar
  24. Horler, D. N. H., Dockray, M., & Barber, J. (1983). The red edge of plant leaf reflectance. International Journal of Remote Sensing, 4(2), 273–288.  https://doi.org/10.1080/01431168308948546.CrossRefGoogle Scholar
  25. Huber, S., Kneubuhler, M., Psomas, A., Itten, K., & Zimmermann, N. E. (2008). Estimating foliar biochemistry from hyperspectral data in mixed forest canopy. Forest Ecology and Management, 256, 491–501.  https://doi.org/10.1016/j.foreco.2008.05.011.CrossRefGoogle Scholar
  26. Imran, M. A., Sajid, Z. A., & Chaudhary, M. N. (2015). Arsenic (As) toxicity to germination and vegetative growth of sunflower (Helianthus annuus L.). Poland Journal of Environment Studies, 24(5), 1993–2002.  https://doi.org/10.15244/pjoes/39553.CrossRefGoogle Scholar
  27. Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC Press LLC.Google Scholar
  28. Kancheva, R., & Borisova, D. (2010). Spectral data for plant chlorophyll assessment. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 7(3), 239–245.Google Scholar
  29. Kidd, P., Mench, M., Álvarez-López, V., Bert, V., Dimitriou, I., Friesl-Hanl, W., et al. (2015). Agronomic practices for improving gentle remediation of trace element-contaminated soils. International Journal of Phytoremediation, 17(11), 1005–1037.  https://doi.org/10.1080/15226514.2014.1003788.CrossRefGoogle Scholar
  30. Li, X., Liu, X., Liu, M., Wang, C., & Xia, X. (2015). A hyperspectral index sensitive to subtle changes in the canopy chlorophyll content under arsenic stress. International Journal of Applied Earth Observation and Geoinformation, 36, 41–53.  https://doi.org/10.1016/j.jag.2014.10.017.CrossRefGoogle Scholar
  31. Maria, S. D., Puschenreiter, M., & Rivelli, A. R. (2013). Cadmium accumulation and physiological response of sunflower plants to Cd during the vegetative growing cycle. Plant Soil Environment, 59(6), 254–261.CrossRefGoogle Scholar
  32. Mariotti, M., Ercoli, L., & Masoni, A. (1996). Spectral properties of iron-deficient corn and sunflower leaves. Remote Sensing of Environment, 58(3), 282–288.  https://doi.org/10.1016/S0034-4257(96)00070-3.CrossRefGoogle Scholar
  33. Mench, M., Lepp, N., Bert, V., Schwitzguébel, J.-P., Gawronski, S. W., Schröder, P., et al. (2010). Successes and limitations of phytotechnologies at field scale: Outcomes, assessment and outlook from COST Action 859. Journal of Soils and Sediments, 10(6), 1039–1070.  https://doi.org/10.1007/s11368-010-0190-x.CrossRefGoogle Scholar
  34. Milton, N. M., Ager, C. M., Eiswerth, B. A., & Power, M. S. (1989). Arsenic-and selenium-induced changes in spectral reflectance and morphology of soybean plants. Remote Sensing of Environment, 30(3), 263–269.  https://doi.org/10.1016/0034-4257(89)90068-0.CrossRefGoogle Scholar
  35. Nehnevajova, E., Herzig, R., Bourigault, C., Bangerter, S., & Schwitzguébel, J.-P. (2009a). Stability of enhanced yield and metal uptake by sunflower mutants for improved phytoremediation. International Journal of Phytoremediation, 11(4), 329–346.  https://doi.org/10.1080/15226510802565394.CrossRefGoogle Scholar
  36. Nehnevajova, E., Herzig, R., Federer, G., Erismann, K.-H., & Schwitzguébel, J.-P. (2005). Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis. International Journal of Phytoremediation, 7(4), 337–349.  https://doi.org/10.1080/16226510500327210.CrossRefGoogle Scholar
  37. Nehnevajova, E., Herzig, R., Schwitzguébel, J. P., & Schmülling, T. (2009b). Sunflower mutants with improved growth and metal accumulation traits show a potential for soil decontamination. In Q. Y. Shu (Ed.), Induced plant mutations in the genomics era (pp. 83–86). Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  38. Noomen, M. F. (2007). Hyperspectral reflectance of vegetation affected by underground hydrocarbon gas seepage. Ph.D. Thesis. Faculty of Geoscience and Earth Observation, University of Twente, The Netherlands. https://webapps.itc.utwente.nl/librarywww/papers_2007/phd/noomen.pdf.
  39. Onwubuya, K., Cundy, A., Puschenreiter, M., Kumpiene, J., Bone, B., Greaves, J., et al. (2009). Developing decision support tools for the selection of “gentle” remediation approaches. Science of the Total Environment, 407(24), 6132–6142.  https://doi.org/10.1016/j.scitotenv.2009.08.017.CrossRefGoogle Scholar
  40. Peñuelas, J., & Filella, I. (1998). Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science, 3(4), 151–156.  https://doi.org/10.1016/S1360-1385(98)01213-8.CrossRefGoogle Scholar
  41. Peñuelas, J., Gamon, J. A., Fredeen, A. L., Merino, J., & Field, C. B. (1994). Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sensing of Environment, 48, 135–146.  https://doi.org/10.1016/0034-4257(94)90136-8.CrossRefGoogle Scholar
  42. Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.  https://doi.org/10.1146/annurev.arplant.56.032604.144214.CrossRefGoogle Scholar
  43. Prasad, M. N. V. (2004). Heavy metal stress in plants: From molecules to ecosystems (2nd ed.). New Delhi: Springer and Jointly published with Narosa Publishing House.CrossRefGoogle Scholar
  44. Prasad, M. N. V., & de Oliveira Freitas, H. M. (2003). Metal hyperaccumulation in plants: Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6(3), 285–321.  https://doi.org/10.2225/vol6-issue3-fulltext-6.CrossRefGoogle Scholar
  45. Raba, A., Henk, S., Meharg, A. A., & Feldmann, J. (2005). Uptake, translocation, and transformation of arsenate and arsenite in sunflower (Helianthus annuus): Formation of arsenic-phytochelatin complexes during exposure to high arsenic concentration. New Phytologist, 168, 551.  https://doi.org/10.1111/j.1469-8137.2005.01519.x.CrossRefGoogle Scholar
  46. Rathod, P. H., Brackhage, C., Van der Meer, F. D., Müller, I., Noomen, M. F., Rossiter, D. G., et al. (2015). Spectral changes in the leaves of barley plant due to phytoremediation of metals-results from a pot study. European Journal of Remote Sensing, 48, 283–302.  https://doi.org/10.5721/EuJRS20154816.CrossRefGoogle Scholar
  47. Rathod, P. H., Rossiter, D. G., Noomen, M. F., & Van der Meer, F. D. (2013). Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils. International Journal of Phytoremediation, 15(5), 405–426.  https://doi.org/10.1080/15226514.2012.702805.CrossRefGoogle Scholar
  48. Schwitzguébel, J. P., Nehnevajova, E., & Herzig, R. (2008). Sustainable approach to remove metals from contaminated soils: Improved phytoextraction by sunflower mutants. ID 291. In N. Kalogerakis, F. Fava & S. A. Banwart (Eds.), E-book of abstract of the fourth European Bioremediaton conference, Crete, Greece, September 3–6, 2008.Google Scholar
  49. Slonecker, T., Haack, B., & Price, S. (2009). Spectroscopic analysis of arsenic uptake in Pteris ferns. Remote Sensing, 1, 644–675.  https://doi.org/10.3390/rs1040644.CrossRefGoogle Scholar
  50. Sridhar, B. B., Han, F. X., Diehl, S. V., Monts, D. L., & Su, Y. (2007a). Monitoring the effects of arsenic and chromium accumulation in Chinese brake fern (Pteris vittata). International Journal of Remote Sensing, 28(5), 1055–1067.  https://doi.org/10.1080/01431160600868466.CrossRefGoogle Scholar
  51. Sridhar, B. B., Han, F. X., Diehl, S. V., Monts, D. L., & Su, Y. (2007b). Spectral reflectance and leaf internal structure changes of barley plants due to phytoextraction of zinc and cadmium. International Journal of Remote Sensing, 28(5), 1041–1054.  https://doi.org/10.1080/01431160500075832.CrossRefGoogle Scholar
  52. Sridhar, B. B., Witter, J. D., Wu, C., Spongberg, A. L., & Vincent, R. K. (2014). Effect of biosolids amendments on the metal and nutrient uptake and spectral characteristics of five vegetables plants. Water, Air, and Soil Pollution, 225(2092), 1–14.  https://doi.org/10.1007/s110270-014-2092-9.CrossRefGoogle Scholar
  53. Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., et al. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research, 16(7), 765–794.  https://doi.org/10.1007/s11356-009-0213-6.CrossRefGoogle Scholar
  54. Westad, F., & Marten, H. (2000). Variable selection in near infrared spectroscopy based on significance testing in partial least squares regression. Journal of Near Infrared Spectroscopy, 8(2), 117–124.  https://doi.org/10.1255/jnirs.271.CrossRefGoogle Scholar

Copyright information

© Indian Society of Remote Sensing 2018

Authors and Affiliations

  • Paresh H. Rathod
    • 1
    • 4
  • Carsten Brackhage
    • 2
  • Ingo Müller
    • 3
  • Freek D. Van der Meer
    • 1
  • Marleen F. Noomen
    • 1
  1. 1.Department of Earth Systems Analysis, Faculty of Geo-information Science and Earth ObservationUniversity of TwenteEnschedeThe Netherlands
  2. 2.Institute for General Ecology and Environmental Protection, Technical UniversityTharandtGermany
  3. 3.Saxon State Office for Environment, Agriculture and GeologyFreibergGermany
  4. 4.Anand Agricultural UniversityAnandIndia

Personalised recommendations