Advertisement

Geo-spatial Modeling for Automated Demarcation of Snow Avalanche Hazard Areas Using Landsat-8 Satellite Images and In Situ Data

  • Dhiraj Kumar SinghEmail author
  • Varunendra Dutta Mishra
  • Hemendra Singh Gusain
  • Neena Gupta
  • Arun Kumar Singh
Research Article
  • 15 Downloads

Abstract

The aim of this study is to generate a reliable dynamic snow avalanche hazard map using analytical hierarchy process method based on multisource geo-spatial data for the Chowkibal–Tangdhar (C–T) road axis in Jammu and Kashmir (J&K), India. Avalanche-prone areas of C–T axis have been demarcated using three causative parameters, i.e., terrain, ground cover and meteorological parameters. Terrain parameters, e.g., elevation, slope, aspect and curvature, have been estimated from Advanced Spaceborne Thermal Emission and Reflection Radiometer, Global Digital Elevation Model Version 2. Ground cover information has been extracted from Landsat-8 data. Meteorological parameters maps, i.e., snow depth, relative humidity and air temperature, have been generated using geo-spatial interpolation techniques of in situ data. All the parameters have been incorporated in Geographic Information System environment to generate the hazard map. Validation of hazard map was accomplished with the area under the curve method. The prediction rate was observed to be 93.2%. Further, 20% of the study area was estimated having no hazard, 55% as low hazard, 12% as moderate hazard and 13% as high hazard on April 13, 2015. Dynamic hazard map thus generated using remote sensing and in situ data will be useful for mitigation of snow avalanche hazard, regional planning for development of infrastructure, transportation, troops movement, army deployments and communication network.

Keywords

Snow avalanches Terrain parameters Meteorological parameters Geographic Information System Analytical hierarchy process 

Notes

Acknowledgements

The authors are grateful to Shri. Naresh Kumar, Director, Snow and Avalanche Study Establishment (SASE), Chandigarh, for providing facilities to carry out this work and constant motivation during the investigation. The authors would like to acknowledge SASE staff for collecting ground data. We are also thankful to Shri. S. K. Dewali, Shri. Dhirender and Manoj Kumar for providing technical support during the preparation of the manuscript. Authors are thankful to http://earthexplorer.usgs.gov/, USGS for providing Landsat-8 data and GDEM.

References

  1. Abdul, A. A., Naqvi, H. R., & Firdouse, Z. (2015). An assessment and identification of avalanche hazard sites in Uri sector and its surroundings on Himalayan mountain. Journal of Mountain Science, 12(6), 1499–1510.  https://doi.org/10.1007/s11629-014-3274-z.CrossRefGoogle Scholar
  2. Bahuguna, I. M., Kulkarni, A. V., Nayak, S., Rathore, B. P., Negi, H. S., & Mathur, P. (2007). Himalayan glacier retreat using IRS 1C PAN stereo data. International Journal of Remote Sensing, 28, 437–442.CrossRefGoogle Scholar
  3. Bathrellos, G. D., Gaki-Papanastassiou, K., Skilodimou, H. D., Papanastassiou, D., & Chousianitis, K. G. (2012). Potential suitability for urban planning and industry development using natural hazard maps and geological-geomorphological parameters. Environmental Earth Sciences, 66(2), 537–548.  https://doi.org/10.1007/s12665-011-1263-x.CrossRefGoogle Scholar
  4. Bellaire, S., Jamieson, J. B., & Fierz, C. (2011). Forcing the snow-cover model SNOWPACK with forecasted weather data. Cryosphere, 5(4), 1115–1125.  https://doi.org/10.5194/tc-5-1115-2011.CrossRefGoogle Scholar
  5. Buck, A. L. (1981). New equations for computing vapor pressure and enhancement factor. Journal of Applied Meteorology, 20(12), 1527–1532.  https://doi.org/10.1175/1520-0450(1981)020%3c1527:NEFCVP%3e2.0.CO;2.CrossRefGoogle Scholar
  6. Bui, D. T., Lofman, O., Revhaug, I., & Dick, O. (2011). Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Natural Hazards, 59(3), 1413–1444.  https://doi.org/10.1007/s11069-011-9844-2.CrossRefGoogle Scholar
  7. Chang, C. L., & Chao, Y. C. (2012). Using the analytical hierarchy process to assess the environmental vulnerabilities of basins in Taiwan. Environmental Monitoring and Assessment, 184(5), 2939–2945.  https://doi.org/10.1007/s10661-011-2162-z.CrossRefGoogle Scholar
  8. Chen, V. Y. C., Lien, H. P., Liu, C. H., Liou, J. J. H., Tzeng, G. H., & Yang, L. S. (2011). Fuzzy MCDM approach for selecting the best environment-watershed plan. Applied Soft Computing Journal, 11(1), 265–275.  https://doi.org/10.1016/j.asoc.2009.11.017.CrossRefGoogle Scholar
  9. Colbeck, S., Akiyaya, E., Armstrong, R. (1990). International classification of seasonal snow on the ground. In International commission for snow and ice (IAHS), world data center for glaciology of Colorado, Boulder, CO, USA.Google Scholar
  10. Dai, F. C., Lee, C. F., Li, J., & Xu, Z. W. (2001). Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology, 43(3), 381–391.Google Scholar
  11. Dewali, S. K. (2010). A prototype model for integration of topographical and meteorological parameters for avalanche hazard analysis. DRDO Science Spectrum (pp. 27–36).Google Scholar
  12. Dewali, S. K., Mani, S., Singh, P. S., & Sarwade, R. N. (2009). A GIS-based avalanche hazard zonation scheme for NW Himalaya using topographical and meteorological variables. In Proceedings of international symposium on snow and avalanches (ISSA-09), Manali, India, April 6–10, 2009 (pp. 99–107).Google Scholar
  13. Dimri, A. P., Niyogi, D., Barros, A. P., Ridley, J., Mohanty, U. C., Yasunari, T., et al. (2015). Western disturbances: A review. Reviews of Geophysics.  https://doi.org/10.1002/2014RG000460.Google Scholar
  14. Ezzati, S., Najafi, A., & Bettinger, P. (2016). Finding feasible harvest zones in mountainous areas using integrated spatial multi-criteria decision analysis. Land Use Policy, 59, 478–491.  https://doi.org/10.1016/j.landusepol.2016.09.020.CrossRefGoogle Scholar
  15. Gusain, H. S., Chand, D., Thakur, N., Singh, A., Ganju, A. (2009). Snow avalanche climatology of Indian western Himalaya. In International symposium on snow and avalanches (ISSA), 6–10 April, Manali, India.Google Scholar
  16. Gusain, H. S., Kala, M., Ganju, A., Mishra, V. D., & Snehmani, (2015). Observations of snow-meteorological parameters in Gangotri glacier region. Current Science, 109(11), 2116–2120.  https://doi.org/10.18520/v109/i11/2116-2120.CrossRefGoogle Scholar
  17. Gusain, H. S., Mishra, V. D., & Arora, M. K. (2014). Estimation of net shortwave radiation flux of western Himalayan snow cover during clear sky days using remote sensing and meteorological data. Remote Sensing Letters, 5, 83–92.CrossRefGoogle Scholar
  18. Gusain, H. S., Mishra, V. D., Arora, M. K., Mamgain, S., & Singh, D. K. (2016). Operational algorithm for generation of snow depth maps from discrete data in Indian western Himalaya. Cold Regions Science and Technology, 126, 22–29.  https://doi.org/10.1016/j.coldregions.2016.02.012.CrossRefGoogle Scholar
  19. Gusain, H. S., Mishra, V., & Singh, D. K. (2018). Study of a snow avalanche accident along Chowkibal–Tangdhar road in Kupwara district, Jammu and Kashmir, India. Current Science, 115(05), 969–972.  https://doi.org/10.18520/cs/v115/i5/962-969.Google Scholar
  20. Jaafari, A., Najafi, A., Pourghasemi, H. R., Rezaeian, J., & Sattarian, A. (2014). GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. International Journal of Environmental Science and Technology, 11(4), 909–926.  https://doi.org/10.1007/s13762-013-0464-0.CrossRefGoogle Scholar
  21. Joshi, J. C., & Srivastava, S. (2014). A hidden Markov model for avalanche forecasting on Chowkibal–Tangdhar road axis in Indian Himalayas. Journal of Earth System Science, 123(8), 1771–1779.  https://doi.org/10.1007/s12040-014-0510-4.CrossRefGoogle Scholar
  22. König, M., Winther, J. G., & Isaksson, E. (2001). Measuring snow and glacier ice properties from satellite. Reviews of Geophysics, 39(1), 1–27.  https://doi.org/10.1029/1999RG000076.CrossRefGoogle Scholar
  23. Krishna, A. P. (1996). Cover: Satellite remote sensing applications for snow cover characterization in the morphogenetic regions of upper Tista river basin, Sikkim Himalaya. International Journal of Remote Sensing, 17(4), 651–656.  https://doi.org/10.1080/01431169608949035.CrossRefGoogle Scholar
  24. Kulkarni, A. V., & Bahuguna, I. M. (2002). Glacial retreat in the Baspa basin, Himalayas, monitored with satellite stereo data. Journal of Glaciology, 48, 171–172.CrossRefGoogle Scholar
  25. Kumar, S., Snehmani, Srivastava, P. K., Gore, A., & Singh, M. K. (2016). Fuzzy–frequency ratio model for avalanche susceptibility mapping. International Journal of Digital Earth, 9(12), 1168–1184.  https://doi.org/10.1080/17538947.2016.1197328.CrossRefGoogle Scholar
  26. Maestro, A., Somoza, L., Medialdea, T., Talbot, C. J., Lowrie, A., Vázquez, J. T., et al. (2003). Large-scale slope failure involving Triassic and middle Miocene salt and shale in the Gulf of Cádiz (Atlantic Iberian Margin). Terra Nova, 15(6), 380–391.  https://doi.org/10.1046/j.1365-3121.2003.00513.x.CrossRefGoogle Scholar
  27. McClung, D. M. (2002). The elements of applied avalanche forecasting part I: The human issues. Natural Hazards, 26(2), 111–129.  https://doi.org/10.1023/A:1015665432221.CrossRefGoogle Scholar
  28. McClung, D. M., & Schaerer, P. (2006). The avalanche handbook (3rd ed.). Seattle, WA: The Mountaineers Books.Google Scholar
  29. Nagarajan, R., Venkataraman, G., & Snehmani, (2014). Rule based classification of potential snow avalanche areas. Natural Resources and Conservation, 2(2), 11–24.Google Scholar
  30. Pourghasemi, H. R., Moradi, H. R., Fatemi Aghda, S. M., Gokceoglu, C., & Pradhan, B. (2014). GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arabian Journal of Geosciences, 7(5), 1857–1878.  https://doi.org/10.1007/s12517-012-0825-x.CrossRefGoogle Scholar
  31. Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365.  https://doi.org/10.1016/j.cageo.2012.08.023.CrossRefGoogle Scholar
  32. Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281.  https://doi.org/10.1016/0022-2496(77)90033-5.CrossRefGoogle Scholar
  33. Saaty, T. L. (1980). The analytic hierarchy process. Education.  https://doi.org/10.3414/ME10-01-0028.Google Scholar
  34. Saaty, T. L. (1988). What is the analytic hierarchy process? In G. Mitra, H. Greenberg, F. Lootsma, M. Rijkaert, & H. Zimmermann (Eds.), Mathematical models for decision support (pp. 109–121). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  35. Saaty, T. L., & Vargas, L. G. (2001). Models, methods, concepts and applications of the analytic hierarchy process (Vol. 175). Berlin: Springer.  https://doi.org/10.1007/978-1-4615-1665-1.CrossRefGoogle Scholar
  36. Schweizer, J., Jamieson, B., & Reuter, B. (2013). How surface warming affects dry-snow instability. The Avalanche Review, 31(3), 25–31.Google Scholar
  37. Sharma, S. S., & Ganju, A. (2000). Complexities of avalanche forecasting in Western Himalaya—An overview. Cold Regions Science and Technology, 31(2), 95–102.  https://doi.org/10.1016/S0165-232X(99)00034-8.CrossRefGoogle Scholar
  38. Sharma, V., Mishra, V. D., & Joshi, P. K. (2014). Topographic controls on spatio-temporal snow cover distribution in Northwest Himalaya. International Journal of Remote Sensing, 35(9), 3036–3056.  https://doi.org/10.1080/01431161.2014.894665.CrossRefGoogle Scholar
  39. Singh, D. K., Gusain, H. S., Mishra, V., & Gupta, N. (2018a). Automated retrieval of snow/ice surface broadband albedo in Beas River Basin, India using landsat-8 satellite images and validation with wireless sensor network data. Journal of the Indian Society of Remote Sensing.  https://doi.org/10.1007/s12524-018-0863-2.Google Scholar
  40. Singh, D. K., Gusain, H. S., Mishra, V., & Gupta, N. (2018b). Snow cover variability in North-West Himalaya during last decade. Arabian Journal of Geosciences.  https://doi.org/10.1007/s12517-018-3926-3.Google Scholar
  41. Singh, D. K., Gusain, H. S., Mishra, V., Gupta, N., & Das, R. K. (2018c). Automated mapping of snow/ice surface temperature using Landsat-8 data in Beas River basin, India, and validation with wireless sensor network data. Arabian Journal of Geosciences.  https://doi.org/10.1007/s12517-018-3497-3.Google Scholar
  42. Singh, D. K., Singh, K. K., Mishra, V. D., & Sharma, J. K. (2012). Formulation of snow depth algorithms for different regions of NW-Himalaya using passive microwave satellite data. International Journal of Engineering Research & Technology, 1(5), 1–9.Google Scholar
  43. Singh, K. K., DewaIi, S. K., Singh, D. K., Mishra, V. D., & Kaur, M. (2016). Monitoring of snow surface temperature in North-West Himalaya using passive microwave satellite data. Indian Journal of Radio & Space Physics, 45(March), 20–29.Google Scholar
  44. Singh, K. K., Mishra, V. D., Singh, D. K., & Ganju, A. (2013). Estimation of snow surface temperature for NW Himalayan regions using passive microwave satellite data. Indian Journal of Radio & Space Physics, 42(February), 27–33.Google Scholar
  45. Snehmani, Bhardwaj, A., Pandit, A., & Ganju, A. (2014). Demarcation of potential avalanche sites using remote sensing and ground observations: A case study of Gangotri glacier. Geocarto International, 29(5), 520–535.  https://doi.org/10.1080/10106049.2013.807304.CrossRefGoogle Scholar
  46. Tachikawa, T., Hato, M., Kaku, M., & Iwasaki, A. (2011). Characteristics of ASTER GDEM version 2. In International geoscience and remote sensing symposium (IGARSS) (pp. 3657–3660).  https://doi.org/10.1109/IGARSS.2011.6050017.
  47. United Nations. (2004). Living with risk. Geneva: United Nations.Google Scholar

Copyright information

© Indian Society of Remote Sensing 2019

Authors and Affiliations

  • Dhiraj Kumar Singh
    • 1
    • 2
    Email author
  • Varunendra Dutta Mishra
    • 1
  • Hemendra Singh Gusain
    • 1
  • Neena Gupta
    • 2
  • Arun Kumar Singh
    • 2
  1. 1.Snow and Avalanche Study Establishment- RDC (DRDO)ChandigarhIndia
  2. 2.Punjab Engineering College (Deemed to be University) (Formally Known as PEC University of Technology)ChandigarhIndia

Personalised recommendations