Geo-spatial Modeling for Automated Demarcation of Snow Avalanche Hazard Areas Using Landsat-8 Satellite Images and In Situ Data
- 15 Downloads
Abstract
The aim of this study is to generate a reliable dynamic snow avalanche hazard map using analytical hierarchy process method based on multisource geo-spatial data for the Chowkibal–Tangdhar (C–T) road axis in Jammu and Kashmir (J&K), India. Avalanche-prone areas of C–T axis have been demarcated using three causative parameters, i.e., terrain, ground cover and meteorological parameters. Terrain parameters, e.g., elevation, slope, aspect and curvature, have been estimated from Advanced Spaceborne Thermal Emission and Reflection Radiometer, Global Digital Elevation Model Version 2. Ground cover information has been extracted from Landsat-8 data. Meteorological parameters maps, i.e., snow depth, relative humidity and air temperature, have been generated using geo-spatial interpolation techniques of in situ data. All the parameters have been incorporated in Geographic Information System environment to generate the hazard map. Validation of hazard map was accomplished with the area under the curve method. The prediction rate was observed to be 93.2%. Further, 20% of the study area was estimated having no hazard, 55% as low hazard, 12% as moderate hazard and 13% as high hazard on April 13, 2015. Dynamic hazard map thus generated using remote sensing and in situ data will be useful for mitigation of snow avalanche hazard, regional planning for development of infrastructure, transportation, troops movement, army deployments and communication network.
Keywords
Snow avalanches Terrain parameters Meteorological parameters Geographic Information System Analytical hierarchy processNotes
Acknowledgements
The authors are grateful to Shri. Naresh Kumar, Director, Snow and Avalanche Study Establishment (SASE), Chandigarh, for providing facilities to carry out this work and constant motivation during the investigation. The authors would like to acknowledge SASE staff for collecting ground data. We are also thankful to Shri. S. K. Dewali, Shri. Dhirender and Manoj Kumar for providing technical support during the preparation of the manuscript. Authors are thankful to http://earthexplorer.usgs.gov/, USGS for providing Landsat-8 data and GDEM.
References
- Abdul, A. A., Naqvi, H. R., & Firdouse, Z. (2015). An assessment and identification of avalanche hazard sites in Uri sector and its surroundings on Himalayan mountain. Journal of Mountain Science, 12(6), 1499–1510. https://doi.org/10.1007/s11629-014-3274-z.CrossRefGoogle Scholar
- Bahuguna, I. M., Kulkarni, A. V., Nayak, S., Rathore, B. P., Negi, H. S., & Mathur, P. (2007). Himalayan glacier retreat using IRS 1C PAN stereo data. International Journal of Remote Sensing, 28, 437–442.CrossRefGoogle Scholar
- Bathrellos, G. D., Gaki-Papanastassiou, K., Skilodimou, H. D., Papanastassiou, D., & Chousianitis, K. G. (2012). Potential suitability for urban planning and industry development using natural hazard maps and geological-geomorphological parameters. Environmental Earth Sciences, 66(2), 537–548. https://doi.org/10.1007/s12665-011-1263-x.CrossRefGoogle Scholar
- Bellaire, S., Jamieson, J. B., & Fierz, C. (2011). Forcing the snow-cover model SNOWPACK with forecasted weather data. Cryosphere, 5(4), 1115–1125. https://doi.org/10.5194/tc-5-1115-2011.CrossRefGoogle Scholar
- Buck, A. L. (1981). New equations for computing vapor pressure and enhancement factor. Journal of Applied Meteorology, 20(12), 1527–1532. https://doi.org/10.1175/1520-0450(1981)020%3c1527:NEFCVP%3e2.0.CO;2.CrossRefGoogle Scholar
- Bui, D. T., Lofman, O., Revhaug, I., & Dick, O. (2011). Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Natural Hazards, 59(3), 1413–1444. https://doi.org/10.1007/s11069-011-9844-2.CrossRefGoogle Scholar
- Chang, C. L., & Chao, Y. C. (2012). Using the analytical hierarchy process to assess the environmental vulnerabilities of basins in Taiwan. Environmental Monitoring and Assessment, 184(5), 2939–2945. https://doi.org/10.1007/s10661-011-2162-z.CrossRefGoogle Scholar
- Chen, V. Y. C., Lien, H. P., Liu, C. H., Liou, J. J. H., Tzeng, G. H., & Yang, L. S. (2011). Fuzzy MCDM approach for selecting the best environment-watershed plan. Applied Soft Computing Journal, 11(1), 265–275. https://doi.org/10.1016/j.asoc.2009.11.017.CrossRefGoogle Scholar
- Colbeck, S., Akiyaya, E., Armstrong, R. (1990). International classification of seasonal snow on the ground. In International commission for snow and ice (IAHS), world data center for glaciology of Colorado, Boulder, CO, USA.Google Scholar
- Dai, F. C., Lee, C. F., Li, J., & Xu, Z. W. (2001). Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology, 43(3), 381–391.Google Scholar
- Dewali, S. K. (2010). A prototype model for integration of topographical and meteorological parameters for avalanche hazard analysis. DRDO Science Spectrum (pp. 27–36).Google Scholar
- Dewali, S. K., Mani, S., Singh, P. S., & Sarwade, R. N. (2009). A GIS-based avalanche hazard zonation scheme for NW Himalaya using topographical and meteorological variables. In Proceedings of international symposium on snow and avalanches (ISSA-09), Manali, India, April 6–10, 2009 (pp. 99–107).Google Scholar
- Dimri, A. P., Niyogi, D., Barros, A. P., Ridley, J., Mohanty, U. C., Yasunari, T., et al. (2015). Western disturbances: A review. Reviews of Geophysics. https://doi.org/10.1002/2014RG000460.Google Scholar
- Ezzati, S., Najafi, A., & Bettinger, P. (2016). Finding feasible harvest zones in mountainous areas using integrated spatial multi-criteria decision analysis. Land Use Policy, 59, 478–491. https://doi.org/10.1016/j.landusepol.2016.09.020.CrossRefGoogle Scholar
- Gusain, H. S., Chand, D., Thakur, N., Singh, A., Ganju, A. (2009). Snow avalanche climatology of Indian western Himalaya. In International symposium on snow and avalanches (ISSA), 6–10 April, Manali, India.Google Scholar
- Gusain, H. S., Kala, M., Ganju, A., Mishra, V. D., & Snehmani, (2015). Observations of snow-meteorological parameters in Gangotri glacier region. Current Science, 109(11), 2116–2120. https://doi.org/10.18520/v109/i11/2116-2120.CrossRefGoogle Scholar
- Gusain, H. S., Mishra, V. D., & Arora, M. K. (2014). Estimation of net shortwave radiation flux of western Himalayan snow cover during clear sky days using remote sensing and meteorological data. Remote Sensing Letters, 5, 83–92.CrossRefGoogle Scholar
- Gusain, H. S., Mishra, V. D., Arora, M. K., Mamgain, S., & Singh, D. K. (2016). Operational algorithm for generation of snow depth maps from discrete data in Indian western Himalaya. Cold Regions Science and Technology, 126, 22–29. https://doi.org/10.1016/j.coldregions.2016.02.012.CrossRefGoogle Scholar
- Gusain, H. S., Mishra, V., & Singh, D. K. (2018). Study of a snow avalanche accident along Chowkibal–Tangdhar road in Kupwara district, Jammu and Kashmir, India. Current Science, 115(05), 969–972. https://doi.org/10.18520/cs/v115/i5/962-969.Google Scholar
- Jaafari, A., Najafi, A., Pourghasemi, H. R., Rezaeian, J., & Sattarian, A. (2014). GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. International Journal of Environmental Science and Technology, 11(4), 909–926. https://doi.org/10.1007/s13762-013-0464-0.CrossRefGoogle Scholar
- Joshi, J. C., & Srivastava, S. (2014). A hidden Markov model for avalanche forecasting on Chowkibal–Tangdhar road axis in Indian Himalayas. Journal of Earth System Science, 123(8), 1771–1779. https://doi.org/10.1007/s12040-014-0510-4.CrossRefGoogle Scholar
- König, M., Winther, J. G., & Isaksson, E. (2001). Measuring snow and glacier ice properties from satellite. Reviews of Geophysics, 39(1), 1–27. https://doi.org/10.1029/1999RG000076.CrossRefGoogle Scholar
- Krishna, A. P. (1996). Cover: Satellite remote sensing applications for snow cover characterization in the morphogenetic regions of upper Tista river basin, Sikkim Himalaya. International Journal of Remote Sensing, 17(4), 651–656. https://doi.org/10.1080/01431169608949035.CrossRefGoogle Scholar
- Kulkarni, A. V., & Bahuguna, I. M. (2002). Glacial retreat in the Baspa basin, Himalayas, monitored with satellite stereo data. Journal of Glaciology, 48, 171–172.CrossRefGoogle Scholar
- Kumar, S., Snehmani, Srivastava, P. K., Gore, A., & Singh, M. K. (2016). Fuzzy–frequency ratio model for avalanche susceptibility mapping. International Journal of Digital Earth, 9(12), 1168–1184. https://doi.org/10.1080/17538947.2016.1197328.CrossRefGoogle Scholar
- Maestro, A., Somoza, L., Medialdea, T., Talbot, C. J., Lowrie, A., Vázquez, J. T., et al. (2003). Large-scale slope failure involving Triassic and middle Miocene salt and shale in the Gulf of Cádiz (Atlantic Iberian Margin). Terra Nova, 15(6), 380–391. https://doi.org/10.1046/j.1365-3121.2003.00513.x.CrossRefGoogle Scholar
- McClung, D. M. (2002). The elements of applied avalanche forecasting part I: The human issues. Natural Hazards, 26(2), 111–129. https://doi.org/10.1023/A:1015665432221.CrossRefGoogle Scholar
- McClung, D. M., & Schaerer, P. (2006). The avalanche handbook (3rd ed.). Seattle, WA: The Mountaineers Books.Google Scholar
- Nagarajan, R., Venkataraman, G., & Snehmani, (2014). Rule based classification of potential snow avalanche areas. Natural Resources and Conservation, 2(2), 11–24.Google Scholar
- Pourghasemi, H. R., Moradi, H. R., Fatemi Aghda, S. M., Gokceoglu, C., & Pradhan, B. (2014). GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arabian Journal of Geosciences, 7(5), 1857–1878. https://doi.org/10.1007/s12517-012-0825-x.CrossRefGoogle Scholar
- Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365. https://doi.org/10.1016/j.cageo.2012.08.023.CrossRefGoogle Scholar
- Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5.CrossRefGoogle Scholar
- Saaty, T. L. (1980). The analytic hierarchy process. Education. https://doi.org/10.3414/ME10-01-0028.Google Scholar
- Saaty, T. L. (1988). What is the analytic hierarchy process? In G. Mitra, H. Greenberg, F. Lootsma, M. Rijkaert, & H. Zimmermann (Eds.), Mathematical models for decision support (pp. 109–121). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
- Saaty, T. L., & Vargas, L. G. (2001). Models, methods, concepts and applications of the analytic hierarchy process (Vol. 175). Berlin: Springer. https://doi.org/10.1007/978-1-4615-1665-1.CrossRefGoogle Scholar
- Schweizer, J., Jamieson, B., & Reuter, B. (2013). How surface warming affects dry-snow instability. The Avalanche Review, 31(3), 25–31.Google Scholar
- Sharma, S. S., & Ganju, A. (2000). Complexities of avalanche forecasting in Western Himalaya—An overview. Cold Regions Science and Technology, 31(2), 95–102. https://doi.org/10.1016/S0165-232X(99)00034-8.CrossRefGoogle Scholar
- Sharma, V., Mishra, V. D., & Joshi, P. K. (2014). Topographic controls on spatio-temporal snow cover distribution in Northwest Himalaya. International Journal of Remote Sensing, 35(9), 3036–3056. https://doi.org/10.1080/01431161.2014.894665.CrossRefGoogle Scholar
- Singh, D. K., Gusain, H. S., Mishra, V., & Gupta, N. (2018a). Automated retrieval of snow/ice surface broadband albedo in Beas River Basin, India using landsat-8 satellite images and validation with wireless sensor network data. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-018-0863-2.Google Scholar
- Singh, D. K., Gusain, H. S., Mishra, V., & Gupta, N. (2018b). Snow cover variability in North-West Himalaya during last decade. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-018-3926-3.Google Scholar
- Singh, D. K., Gusain, H. S., Mishra, V., Gupta, N., & Das, R. K. (2018c). Automated mapping of snow/ice surface temperature using Landsat-8 data in Beas River basin, India, and validation with wireless sensor network data. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-018-3497-3.Google Scholar
- Singh, D. K., Singh, K. K., Mishra, V. D., & Sharma, J. K. (2012). Formulation of snow depth algorithms for different regions of NW-Himalaya using passive microwave satellite data. International Journal of Engineering Research & Technology, 1(5), 1–9.Google Scholar
- Singh, K. K., DewaIi, S. K., Singh, D. K., Mishra, V. D., & Kaur, M. (2016). Monitoring of snow surface temperature in North-West Himalaya using passive microwave satellite data. Indian Journal of Radio & Space Physics, 45(March), 20–29.Google Scholar
- Singh, K. K., Mishra, V. D., Singh, D. K., & Ganju, A. (2013). Estimation of snow surface temperature for NW Himalayan regions using passive microwave satellite data. Indian Journal of Radio & Space Physics, 42(February), 27–33.Google Scholar
- Snehmani, Bhardwaj, A., Pandit, A., & Ganju, A. (2014). Demarcation of potential avalanche sites using remote sensing and ground observations: A case study of Gangotri glacier. Geocarto International, 29(5), 520–535. https://doi.org/10.1080/10106049.2013.807304.CrossRefGoogle Scholar
- Tachikawa, T., Hato, M., Kaku, M., & Iwasaki, A. (2011). Characteristics of ASTER GDEM version 2. In International geoscience and remote sensing symposium (IGARSS) (pp. 3657–3660). https://doi.org/10.1109/IGARSS.2011.6050017.
- United Nations. (2004). Living with risk. Geneva: United Nations.Google Scholar