A Hybrid Multi-scale Spatial Filtering and Minimum Spanning Forest for Spectral–Spatial Hyperspectral Image Classification

Research Article
  • 93 Downloads

Abstract

Integration of spatial and spectral information is an effective way in improving classification accuracy. In this article a new framework, based on multi-scale spatial weighted mean filtering (MSWMF) and minimum spanning forest, is proposed for the spectral–spatial classification of hyperspectral images. In the proposed framework, at first the image is smoothed by MSWMF and then the first eight principal components are extracted. Using support vector machine, at each scale of MSWMF, a classification map is produced in order to generate a marker map in the next step. Then, the minimum spanning forest is built on the marker map. Finally, in order to create a final classification map, all the classification maps of each scale are merged with a majority vote rule. The experimental results of the hyper-spectral images indicate that the suggested framework enhances the classification accuracy, in comparison with previously classification techniques. So, it is interesting for hyperspectral images classification.

Keywords

Classification Hyperspectral images Minimum spanning forest (MSF) Multi scale weighted mean filtering (MSWMF) 

References

  1. Bernard, K., Tarabalka, Y., Angulo, J., Chanussot, J., & Benediktsson, J. A. (2012). Spectral–spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach. IEEE Transactions on Geoscience and Remote Sensing, 21(4), 2008–2021.Google Scholar
  2. Borhani, M., & Ghassemian, H. (2013). Spectral–spatial graph kernel machines in the context of hyperspectral remote sensing image classification CSI. Journal on Computer Science and Engineering, 11(2 & 4 (b)), 31–42.Google Scholar
  3. Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification. New York: Wiley.Google Scholar
  4. Fauvel, M., Chanussot, J., & Benediktsson, J. A. (2012). A spatial–spectral kernel-based approach for the classification of remote-sensing images. Pattern Recognition, 45(1), 381–392.CrossRefGoogle Scholar
  5. Imani, M., & Ghassemian, H. (2017). Local histogram and discriminative learning-based hyperspectral data classification. Remote Sensing Letters, 8(1), 86–95.CrossRefGoogle Scholar
  6. Kang, X., Liand, Sh, & Benediktsson, J. A. (2014). Spectral–spatial hyperspectral image classification with edge-preserving filtering. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2666–2676.CrossRefGoogle Scholar
  7. Kianisarkaleh, A., & Ghassemian, H. (2016). Spatial–spectral locality preserving projection for hyperspectral image classification with limited training samples. International Journal of Remote Sensing, 37(21), 5045–5059.CrossRefGoogle Scholar
  8. Li, S., Kang, X., & Hu, J. (2013). Image fusion with guided filtering. IEEE Transactions on Image Processing. doi: 10.1109/TIP.2013.2244222.Google Scholar
  9. Liu, W., Li, Sh, Lin, X., Wu, Y., & Ji, R. (2015). Spectral–spatial co-clustering of hyperspectral image data based on bipartite graph. Multimedia Systems. doi: 10.1007/s00530-015-0450-0.Google Scholar
  10. Maaten, L. J. P., Postma, E. O., & Herik, H. J. (2009). Dimensionality reduction: A comparative review. Amsterdam: Univ. Maastricht.Google Scholar
  11. Mirzapour, F., & Ghassemian, H. (2015). Improving hyperspectral image classification by combining spectral, texture, and shape features. International Journal of Remote Sensing, 36(4), 1070–1096. doi: 10.1080/01431161.2015.1007251.Google Scholar
  12. Moser, G., & Serpico, S. B. (2013). Combining support vector machines and Markov random fields in an integrated framework for contextual image classification. IEEE Transactions on Geoscience and Remote Sensing, 51(5), 2734–2752.CrossRefGoogle Scholar
  13. Ratle, F., Camps-Valls, G., & Weston, J. (2010). Semisupervised neural networks for efficient hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 48(5), 2271–2282.CrossRefGoogle Scholar
  14. Tarabalka, Y., Benediktsson, J. A., & Chanussot, J. (2009). Spectralspatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Transactions on Geoscience and Remote Sensing, 47(9), 2973–2987.CrossRefGoogle Scholar
  15. Tarabalka, Y., Benediktsson, J. A., Chanussot, J., & Tilton, J. C. (2010a). Multiple spectral–spatial classification approach for hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 48(11), 4122–4132.Google Scholar
  16. Tarabalka, Y., Chanussot, J., & Benediktsson, J. A. (2010b). Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognition, 43(7), 2367–2379.CrossRefGoogle Scholar
  17. Tarabalka, Y., Chanussot, J., & Benediktsson, J. A. (2010c). Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers. IEEE Transactions on Systems, Man, and Cybernetics: Part B, 40(5), 1267–1279.CrossRefGoogle Scholar
  18. Tarabalka, Y., Tilton, J. C., Benediktsson, J. A., & Chanussot, J. (2012). A marker-based approach for the automated selection of a single segmentation from a hierarchical set of image segmentations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(1), 262–272.CrossRefGoogle Scholar
  19. Zehtabian, A., & Ghassemian, H. (2015). An adaptive pixon extraction technique for multispectral/hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 12(4), 831–835.CrossRefGoogle Scholar
  20. Zhou, H., Mao, Z., & Wang, D. (2005). Classification of coastal areas by airborne hyperspectral image. In Proceedings of SPIE Opt. Technol. Atmos., Ocean, Environ. Stud. (Vol. 5832, pp. 471–476).Google Scholar
  21. Zhou, Y., Peng, J., & Philip Chen, C. L. (2015). Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 53(2), 1082–1095.CrossRefGoogle Scholar

Copyright information

© Indian Society of Remote Sensing 2017

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Faculty of Electrical and Computer EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations