Estimation of Above Ground Biomass Using Texture Metrics Derived from IRS Cartosat-1 Panchromatic Data in Evergreen Forests of Western Ghats, India

  • R. Suraj ReddyEmail author
  • G. Rajashekar
  • C. S. Jha
  • V. K. Dadhwal
  • Raphel Pelissier
  • Pierre Couteron
Research Article


Assessment of above ground forest biomass (AGB) is essential in carbon modelling studies to provide mitigation strategies as demonstrated by reducing emissions from deforestation and forest degradation. Several researchers have demonstrated the use of remote sensing data in spatial AGB estimation, in terms of spectral and radar backscatter based approaches at a landscape scale with several known limitations. However, these methods lacked the predictive ability at high biomass ranges due to saturation. The current study addresses the problem of saturation at high biomass ranges using canopy textural metric from high resolution optical data. Fourier transform based textural ordination (FOTO) technique, which involves deriving radial spectrum information via 2D fast Fourier transform and ordination through principal component analysis was used for characterizing the textural properties of forest canopies. In the current study, plot level estimated AGB from 15 (1 ha) plots was used to relate with texture derived information from very high resolution datasets (viz., IKONOS and Cartosat-1). In addition to the estimation of high biomass ranges, one of the prime objective of the current study is to understand the effects of spatial resolution on deriving textural-AGB relationship from 2.5 m IRS Cartosat data (Cartosat-A, viewing angle = −5°) to that of IKONOS imagery with near nadir view. Further, since texture is impacted by several illumination geometry issues, the effect of viewing geometry on the relationship was evaluated using Cartosat-F (Viewing angle = 26°) imagery. The results show that the FOTO method using stereo Cartosat (A and F) images at 2.5 m resolution are able to perform well in characterizing high AGB values since the texture-biomass relationship is only subjected to 18 % relative error to that of 15 % in case of IKONOS and could aid in reduction of uncertainty in AGB estimation at a large landscape levels.


Above ground biomass Canopy texture Fourier transform IRS Cartosat Western Ghats 



We duly acknowledge the funding by Indo-French Centre for the Promotion of Advanced Research (CEFIPRA) and Indian Space Research Organisation-Geosphere Biosphere Program (ISRO-GBP) for the current study.


  1. Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., Samanta, S., & Houghton, R. A. (2012). Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change, 2(3), 182–185.Google Scholar
  2. Barbier, N., Couteron, P., Proisy, C., Malhi, Y., & Gastellu-Etchegorry, J.-P. (2010). The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests. Global Ecology and Biogeography, 19, 72–84.CrossRefGoogle Scholar
  3. Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., & Papale, D. (2010). Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science (New York, NY), 329, 834–838.CrossRefGoogle Scholar
  4. Bruniquel-Pinel, V., & Gastellu-Etchegorry, J. P. (1998). Sensitivity of texture of high resolution images of forest to biophysical and acquisition parameters. Remote Sensing of Environment, 65, 61–85.CrossRefGoogle Scholar
  5. Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.-P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87–99.CrossRefGoogle Scholar
  6. Couteron, P. (2002). Quantifying change in patterned semi-arid vegetation by Fourier analysis of digitized aerial photographs. International Journal of Remote Sensing, 23, 3407–3425.CrossRefGoogle Scholar
  7. Couteron, P., Barbier, N., & Gautier, D. (2006). Textural ordination based on Fourier spectral decomposition: A method to analyze and compare landscape patterns. Landscape Ecology, 21, 555–567.CrossRefGoogle Scholar
  8. Couteron, P., Barbier, N., Proisy, C., Pélissier, R., & Vincent, G. (2012). Linking remote-sensing information to tropical forest structure: The crucial role of modelling. Earthzine, 4, 1–4.Google Scholar
  9. Couteron, P., Pelissier, R., Nicolini, E. A., & Paget, D. (2005). Predicting tropical forest stand structure parameters from Fourier transform of very high-resolution remotely sensed canopy images. Journal of Applied Ecology, 42, 1121–1128.CrossRefGoogle Scholar
  10. De Boer, Y. (2008). Kyoto protocol reference manual on accounting of emissions and assigned amount. United Nations Framework Convention on Climate Change, pp 1–130.Google Scholar
  11. DeFries, R. S., Houghton, R. A., Hansen, M. C., Field, C. B., Skole, D., & Townshend, J. (2002). Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proceedings of the National Academy of Sciences of the United States of America, 99, 14256–14261.CrossRefGoogle Scholar
  12. Devagiri, G. M., Money, S., Singh, S., Dadhawal, V. K., Patil, P., Khaple, A., Devakumar, A. S., & Hubballi, S. (2013). Assessment of above ground biomass and carbon pool in different vegetation types of south western part of Karnataka, India using spectral modeling. Tropical Ecology, 54, 149–165.Google Scholar
  13. Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C., & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science (Washington), 263, 185–189.CrossRefGoogle Scholar
  14. Frazer, G. W., Wulder, M. A., & Niemann, K. O. (2005). Simulation and quantification of the fine-scale spatial pattern and heterogeneity of forest canopy structure: A lacunarity-based method designed for analysis of continuous canopy heights. Forest Ecology and Management, 214, 65–90.CrossRefGoogle Scholar
  15. Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environmental Research Letters, 2, 45023.CrossRefGoogle Scholar
  16. Grainger, A. (2010). Uncertainty in the construction of global knowledge of tropical forests. Progress in Physical Geography, 34, 811–844.CrossRefGoogle Scholar
  17. Houghton, R. A. (2005). Aboveground forest biomass and the global carbon balance. Global Change Biology, 11, 945–958.CrossRefGoogle Scholar
  18. Lu, D. (2006). The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 27, 1297–1328.CrossRefGoogle Scholar
  19. Madugundu, R., Nizalapur, V., & Jha, C. S. (2008). Estimation of LAI and above-ground biomass in deciduous forests: Western Ghats of Karnataka, India. International Journal of Applied Earth Observation and Geoinformation, 10, 211–219.CrossRefGoogle Scholar
  20. Malhi, Y., & Román-Cuesta, R. M. (2008). Analysis of lacunarity and scales of spatial homogeneity in IKONOS images of Amazonian tropical forest canopies. Remote Sensing of Environment, 112, 2074–2087.CrossRefGoogle Scholar
  21. Mitchard, E. T. A., Saatchi, S. S., White, L. J. T., Abernethy, K. A., Jeffery, K. J., Lewis, S. L., Collins, M., Lefsky, M. A., Leal, M. E., Woodhouse, I. H., & Meir, P. (2012). Mapping tropical forest biomass with radar and spaceborne LiDAR in Lop{é} National Park, Gabon: Overcoming problems of high biomass and persistent cloud. Biogeosciences, 9, 179–191.CrossRefGoogle Scholar
  22. Neigh, C. S. R., Masek, J. G., Bourget, P., Cook, B., Huang, C., Rishmawi, K., & Zhao, F. (2014). Deciphering the precision of stereo IKONOS canopy height models for US forests with G-LiHT airborne lidar. Remote Sensing, 6, 1762–1782.CrossRefGoogle Scholar
  23. Nizalapur, V., Jha, C. S., & Madugundu, R. (2010). Estimation of above ground biomass in Indian tropical forested area using multifrequency DLRESAR data. International Journal of Geomatics and Geosciences, 1, 167–178.Google Scholar
  24. NRSA. (2006). CARTOSAT-1. Data user’s handbook. Scientific Note: CARTOSAT-1/NRSA/NDC/HB-09/06 Sept 2006. National Remote Sensing Agency: Hyderabad.Google Scholar
  25. Pascal, J.-P. (1988). Wet evergreen forests of the Western Ghats of India. Puducherry: Institut francais de Pondichery.Google Scholar
  26. Pascal, J.-P., & Pelissier, R. (1996). Structure and floristic composition of a tropical evergreen forest in south-west India. Journal of Tropical Ecology, 12, 191–214.CrossRefGoogle Scholar
  27. Pélissier, R., Pascal, J.-P., Ayyappan, N., Ramesh, B. R., Aravajy, S., & Ramalingam, S. R. (2011). Tree demography in an undisturbed Dipterocarp permanent sample plot at Uppangala, Western Ghats of India: Ecological Archives E092-115. Ecology, 92, 1376.CrossRefGoogle Scholar
  28. Pelissier, R., Pascal, J.-P., Houllier, F., & Laborde, H. (1998). Impact of selective logging on the dynamics of a low elevation dense moist evergreen forest in the Western Ghats (South India). Forest Ecology and Management, 105, 107–119.CrossRefGoogle Scholar
  29. Ploton, P., Pélissier, R., Proisy, C., Flavenot, T., Barbier, N., Rai, S. N., & Couteron, P. (2012). Assessing aboveground tropical forest biomass using Google Earth canopy images. Ecological Applications, 22, 993–1003.CrossRefGoogle Scholar
  30. Proisy, C., Couteron, P., & Fromard, F. (2007). Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images. Remote Sensing of Environment, 109, 379–392.CrossRefGoogle Scholar
  31. Rai, S. N. (1981). Productivity of tropical rain forests of Karnataka. Bombay: University of Bombay.Google Scholar
  32. Rai, S. N., & Proctor, J. (1986). Ecological studies on four rainforests in Karnataka, India: I. Environment, structure, floristics and biomass. The Journal of Ecology, 2, 439–454.Google Scholar
  33. Singh, M., Malhi, Y., & Bhagwat, S. (2014). Biomass estimation of mixed forest landscape using a Fourier transform texture-based approach on very-high-resolution optical satellite imagery. International Journal of Remote Sensing, 35, 3331–3349.CrossRefGoogle Scholar
  34. Straub, C., Tian, J., Seitz, R., & Reinartz, P. (2013). Assessment of Cartosat-1 and WorldView-2 stereo imagery in combination with a LiDAR-DTM for timber volume estimation in a highly structured forest in Germany. Forestry, 86, 463–473.CrossRefGoogle Scholar
  35. Swamy, S. L., Dutt, C. B. S., Murthy, M. S. R., Mishra, A., & Bargali, S. S. (2010). Floristics and dry matter dynamics of tropical wet evergreen forests of Western Ghats, India. Current Science, 99, 353–364.Google Scholar
  36. Thumaty, K. C., Fararoda, R., Middinti, S., Gopalakrishnan, R., Jha, C. S., & Dadhwal, V. K. (2015). Estimation of above ground biomass for central Indian deciduous forests using ALOS PALSAR L-band data. Journal of the Indian Society of Remote Sensing, 44(1), 31–39.Google Scholar
  37. Tuominen, S., Eerikäinen, K., Schibalski, A., Haakana, M., & Lehtonen, A. (2010). Mapping biomass variables with a multi-source forest inventory technique. Silva Fennica, 44, 109–119.CrossRefGoogle Scholar
  38. Van der Werf, G. R., Morton, D. C., DeFries, R. S., Giglio, L., Randerson, J. T., Collatz, G. J., & Kasibhatla, P. S. (2009). Estimates of fire emissions from an active deforestation region in the southern Amazon based on satellite data and biogeochemical modelling. Biogeosciences, 6, 235–249.Google Scholar
  39. Véga, C., Vepakomma, U., Morel, J., Bader, J.-L., Rajashekar, G., Jha, C. S., Ferêt, J., Proisy, C., Pélissier, R., & Dadhwal, V. K. (2015). Aboveground-biomass estimation of a complex tropical forest in India using lidar. Remote Sensing, 7, 10607–10625.CrossRefGoogle Scholar

Copyright information

© Indian Society of Remote Sensing 2016

Authors and Affiliations

  • R. Suraj Reddy
    • 1
    Email author
  • G. Rajashekar
    • 1
  • C. S. Jha
    • 1
  • V. K. Dadhwal
    • 1
  • Raphel Pelissier
    • 2
  • Pierre Couteron
    • 2
  1. 1.National Remote Sensing Centre (ISRO)Balanagar, HyderabadIndia
  2. 2.Institut de Recherche pour le De´veloppementUMR-AMAPMontpellierFrance

Personalised recommendations