Advertisement

Developing Spectral Library of Major Plant Species of Western Himalayas Using Ground Observations

  • K. R. Manjunath
  • Amit Kumar
  • Mehra Meenakshi
  • R. Renu
  • S. K. Uniyal
  • R. D. Singh
  • P. S. Ahuja
  • S. S. Ray
  • Sushma Panigrahy
Research Article

Abstract

A spectral library of commonly occurring Himalayan plant species has been developed. The 512-channel ASD handheld Fieldspec®Pro, 2000 Spectroradiometer with 3 nm spectral resolution and spectral range of 325 to 1,075 nm has been used for recording the leaf, branch or canopy spectra of plant species. Simultaneous measurements of crop biochemical parameters were estimated following standard methods, and vegetation indices were calculated for all the observations. The photographs of the plant species as well as their general descriptions were also detailed in the library. The spectral library has been developed in .Net programming environment. The GUI of library aids in viewing of all the information related to plant species such as spectral details, spectral graphs, general information of species, observation details, plant photographs, species spectral narrowband indices, species biochemical parameters, export options and help through menus and sub menus. The spectra and other information can be exported for further use by the user. The spectral reflectance can be used during classification of Hyperspectral images. The information provided in the library may also be used to explore the application potential of Hyperspectral images in studying chemical constituents, growth behavior, and ambient ecology of plants on a regional scale in Himalayan region. The basic objective of the work was to standardize the technique for vegetation spectral library development and make the data available for comparison by the user.

Keywords

Spectral library Graphic user interface Flora Himalaya Plant Biochemical parameter Vegetation Index 

Notes

Acknowledgments

This work was carried out under Investigation of Hyperspectral Remote Sensing Applications, an Earth Observations Applications Mission project of Department of Space, India. Authors are thankful to Shri A.S. Kiran Kumar, Director, Space Applications Centre, ISRO, Ahmedabad, India and Dr. Jai Singh Parihar, Deputy Director, EPSA, Space Applications Centre, ISRO Ahmedabad, India for keen interest and encouragement. Authors are thankful to anonymous reviewers for improving the quality of the manuscript.

References

  1. Birth, G. S., & McVey, G. (1968). Measuring the colour of growing turf with a reflectance spectrophotometer. Agronomy Journal, 60, 640.Google Scholar
  2. Bojinski, S., Schaepman, M., Schlapfer, D., & Itten, K. (2003). SPECCHIO: a spectrum database for remote sensing applications. Computers and Geosciences, 29(1), 27–38.CrossRefGoogle Scholar
  3. Broge, N. H., & Leblanc, E. (2000). Comparing predictive power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156–172.CrossRefGoogle Scholar
  4. Barbara Rasaiah, Simon Jones, & Chris Bellman, (2011). Building Better Hyperspectral Datasets: The Fundamental Role of Metadata Protocols in Hyperspectral Field Campaigns. Proceedings of the Surveying & Spatial Sciences Biennial Conference 2011, 21-25 November 2011, Wellington, New Zealand, pp35-48.Google Scholar
  5. Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22, 229–242.Google Scholar
  6. Cho, M. A., Skidmore, A., Corsi, F., Van Wieren, S. E., & Sobhan, I. (2007). Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. International Journal of Applied Earth Observation and Geoinformation, 9, 414–424.Google Scholar
  7. Clark, M., Roberts, D. A., & Clark, D. B. (2005). Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sensing of Environment, 96, 375–398.CrossRefGoogle Scholar
  8. Clarke, R. N., & Swayze, G. A. (1995). Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice and snow, and other materials: The USGS tricorder algorithm. Summaries of the fifth annual JPL airborne earth science workshop, January 23–26, R. O. Green, Ed., Publication. 95-1, 39–40.Google Scholar
  9. Connell, J. (1998) Beginning Visual Basic 6 programming (p.83–96). Wrox Press Limited.Google Scholar
  10. Daughtry, C. S. T., Walthall, C. L., Kim, M. S., de Colstoun, E. B., & McMurtrey, J. E., III. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74, 229–239.Google Scholar
  11. Dey, S. K. (2009). Hyperspectral remote sensing an overview. In S. Rajendran, S. Arvindan, T. J. Rajakumar, R. Sivaskumar, & K. R. Murlimohan (Eds.), Hyperspectral remote sensing and spectral signature applications (pp. 11–22). New Delhi: New India Publishing Agency.Google Scholar
  12. Fu, Y.-Y., Liu, S.-H., Yu, S.-Q., & Tian, Z.-K. (2004). Standard format design and input realization of measured spectral data in the spectral knowledge base. 0-7803-8742-2/04/$20.00 (C) 2004 IEEE, 4444–4447.Google Scholar
  13. Gamon, J. A., Peñuelas, J., & Field, C. B. (1992). A narrowwaveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41, 35–44.Google Scholar
  14. Gitelson, A., & Merzlyak, M. N. (1997). Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 18, 291–298.Google Scholar
  15. Gupta, P. C., Khatta, V. K., & Mandal, A. V. (1988). Analytical Techniques in Animal Nutrition, Directorate of Publications, Haryana Agriculture University, Hissar, India.Google Scholar
  16. Haboudane, D., Miller, J. R., Trembley, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81, 416–426.Google Scholar
  17. Huete, A. R. (1988). A soil adjusted vegetation index (SAVI). Remote Sensing of Environment, 17, 37–53.Google Scholar
  18. Ismail, R., Mutanga, O., & Ahmed, F., (2008). Discriminating Sirex noctilio attack in pine forest plantations in South Africa using high spectral resolution data. In M. Kalacska, & G. A. Sanchez (Eds.), Hyperspectral remote sensing of tropical and sub-tropical forests. CRC Press.Google Scholar
  19. Koegent Solution Inc (2009). Visual Basic 2008 Programming Black book (Platinum edition) (pp. 829–858). New Delhi: Dreamtech Press Edition.Google Scholar
  20. Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591–592.Google Scholar
  21. Martin, M. E., Newman, S. D., Aber, J. D., & Congalton, R. G. (1998). Determining forest species composition using high spectral resolution remote sensing data. Remote Sensing of Environment, 65, 249–254.CrossRefGoogle Scholar
  22. Penuelas, J., Gamon, J. A., Fredeen, J. M., & Field, C. B. (1994). Reflectance indices associated with physiological changes in nitrogen and water limited sunflower leaves. Remote Sensing of Environment, 48, 135–146.Google Scholar
  23. Penuelas, J., Baret, F., & Filella, I. (1995). Semi-empirical indices to assess carotenoids/chlorophyll a from leaf spectral reflectance. Photosynthetica, 31, 221–230.Google Scholar
  24. Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Soroshian, S. (1994). A modified soil vegetation index. Remote Sensing of Environment, 48, 119–126.Google Scholar
  25. Rao, N. R. (2008). Development of a crop-specific spectral library and discrimination of various agricultural crop varieties using hyperspectral imagery. International Journal of Remote Sensing, 29(1/2), 131–144.CrossRefGoogle Scholar
  26. Rasaiah, B., Jones, S., & Bellman, C. (2011). Building better hyperspectral datasets: The fundamental role of metadata protocols in hyperspectral field campaigns. Proceedings of the Surveying & Spatial Sciences Biennial Conference 2011, 21–25 November 2011, Wellington, New Zealand, pp. 35–48Google Scholar
  27. Rondeaux, G., Steven, M., & Barret, F. (1996). Optimization of soil adjusted vegetation indices. Remote Sensing of Environment, 55, 95–107.Google Scholar
  28. Rossel, R. A. V., Jeon, Y. S., Odeh, I. O. A., & McBratney, A. B. (2008). Using a legacy soil sample to develop a mid-IR spectral library. Australian Journal of Soil Research, 46(1), 1–16.CrossRefGoogle Scholar
  29. Roujean, J. L., & Breon, E. M. (1995). Estimation PAR absorbed by vegetation from bi-directional reflectance measurements. Remote Sensing of Environment, 51, 375–384.Google Scholar
  30. Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring Vegetation Systems in the Great Plains with ERTS. Third ERTS Symposium, NASA. SP-351, pp. 48–62.Google Scholar
  31. SAC. (2007). A report on use of hyperspectral remote sensing in agricultural applications: Ground based studies. Ahmedabad: Space Applications Centre.Google Scholar
  32. Sahrawat, K. L., Kumar, G. R., & Murthy, K. V. S. (2002). Sulphuric acid-selenum digestion for multi-element analysis in a single plant digest. Soil Science and Plant Analysis, 33(19–20), 3757–3765.CrossRefGoogle Scholar
  33. Shepherd, K. D., & Walsh, M. G. (2002). Development of reflectance spectral libraries for characterization of soil properties. Soil Science Society of America Journal, 66(3), 988–998.CrossRefGoogle Scholar
  34. Shepherd, K. D., Palm, C. A., Gachengo, C. N., & Vanlauwe, B. (2003). Rapid characterization of organic resource quality for soil and livestock management in tropical agro-ecosystems using near-infrared spectroscopy. Agronomy Journal, 95(5), 1314–1322.CrossRefGoogle Scholar
  35. Shippert, P. (2004). Why use hyperspectral imagery? Photogrammetric Engineering and Remote Sensing, 70(4), 377–380.Google Scholar
  36. Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337–354.CrossRefGoogle Scholar
  37. Stevens, A. (1989). C development (pp. 20–28). New Delhi: BPB Book Centre.Google Scholar
  38. Thenkabail, P. S., Smith, R. B., & De Pauw, E. (2002). Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogrammetric Engineering and Remote Sensing, 68, 607–621.Google Scholar
  39. Underwood, E., Ustin, S., & Dipietro, D. (2003). Mapping nonnative plants using hyperspectral imagery. Remote Sensing of Environment, 86, 150–161.CrossRefGoogle Scholar
  40. Uniyal, S. K., & Uniyal, A. (2009). Climate change and large-scale degradation of spruce: common pattern across the globe. 38, 261–263.Google Scholar
  41. Vogelmann, T. C. (1993). Plant tissue optics. Annual Review of Plant Physiology and Plant Molecular Biology, 44, 231–251.Google Scholar
  42. Zarco-Tejada, P. J., Miller, J. R., Nolland, T. L., Mohammed, G. H., & Sampson, P. H. (2001). Scaling up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 39(7), 1491–1507.Google Scholar
  43. Zomer, R. J., Trabucco, A., & Ustin, S. L. (2008). Building spectral libraries from wetlands land cover classification and hyperspectral remote sensing. Journal of Environmental Management. doi: 10.1016/j.jenvman.2007.06.028.Google Scholar

Copyright information

© Indian Society of Remote Sensing 2013

Authors and Affiliations

  • K. R. Manjunath
    • 1
  • Amit Kumar
    • 2
  • Mehra Meenakshi
    • 2
  • R. Renu
    • 2
  • S. K. Uniyal
    • 2
  • R. D. Singh
    • 2
  • P. S. Ahuja
    • 2
  • S. S. Ray
    • 1
  • Sushma Panigrahy
    • 1
  1. 1.Space Applications CentreIndian Space Research OrganisationAhmedabadIndia
  2. 2.Institute of Himalayan Bioresource TechnologyCSIRPalampurIndia

Personalised recommendations