Journal of the Indian Society of Remote Sensing

, Volume 41, Issue 3, pp 697–709 | Cite as

Remote Sensing and GIS Based Landslide Susceptibility Assessment using Binary Logistic Regression Model: A Case Study in the Ganeshganga Watershed, Himalayas

  • S. Kundu
  • A. K. Saha
  • D. C. Sharma
  • C. C. Pant
Research Article


A comprehensive Landslide Susceptibility Zonation (LSZ) map is sought for adopting any landslide preventive and mitigation measures. In the present study, LSZ map of landslide prone Ganeshganga watershed (known for Patalganga Landslide) has been generated using a binary logistic regression (BLR) model. Relevant thematic layers pertaining to the causative factors for landslide occurrences, such as slope, aspect, relative relief, lithology, tectonic structures, lineaments, land use and land cover, distance to drainage, drainage density and anthropogenic factors like distance to road, have been generated using remote sensing images, field survey, ancillary data and GIS techniques. The coefficients of the causative factors retained by the BLR model along with the constant have been used to construct the landslide susceptibility map of the study area, which has further been categorized into four landslide susceptibility zones from high to very low. The resultant landslide susceptibility map was validated using receiver operator characteristic (ROC) curve analysis showing an accuracy of 95.2 % for an independent set of test samples. The result also showed a strong agreement between distribution of existing landslides and predicted landslide susceptibility zones.


Landslide Susceptibility Logistic Regression GIS Remote Sensing 



Sanjit Kundu is grateful to all the personnel of DIGIT, for rendering unstinted support and encouragement. Dr K P Sharma, General Manager, RRSC-North, Dehradun, ISRO, Department of Space, for providing part of the relevant data. The authors sincerely acknowledge Director, Map and Cartography Division, Geological Survey of India, Lucknow for permission to refer Geological map. This manuscript has been greatly benefited from the suggestions of both the anonymous reviewers.


  1. Anbalagan, R. (1992). Landslide hazard evaluation and zonation mapping in mountainous terrain. Engineering Geology, 32, 269–277.CrossRefGoogle Scholar
  2. Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda–Yahiko Mountains, Central Japan. Geomorphology, 65, 15–31.CrossRefGoogle Scholar
  3. Baeza, C., & Corominas, J. (2001). Assessment of hallow landslide susceptibility by means of multivariate statistical techniques. Earth Surface Processes and Landforms, 26, 1251–1263.CrossRefGoogle Scholar
  4. Begueria, S., & Lorente, A. (2002). Landslide hazard mapping by multivariate statistics: comparison of methods and case study in the Spanish Pyrenees (p. 19). Saragossa, Spain: Technical report. Instituto Pirenaico de Ecologia.Google Scholar
  5. Champatiray, P. K., Suvarna, D., Lakhera, R. C., & Sati, S. (2007). Fuzzy based method for landslide hazard zonation in active seismic zone of Himalaya. Landslides, 5(4), 101–111.CrossRefGoogle Scholar
  6. Chauhan, S., Sharma, M., & Arora, M. K. (2010). Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model. Landslides, 7, 411–423.CrossRefGoogle Scholar
  7. Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., & Dhakal, S. (2008). DEM-based deterministic landslide hazard analysis in the Lesser Himalaya of Nepal. Georisk, 2(3), 161–178.Google Scholar
  8. Das, I., Sahoo, S., Van Westen, C. J., Stein, A., & Hack, R. (2010). Landslide susceptibility assessment using logistic regression and its comparision with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology, 114, 627–637.CrossRefGoogle Scholar
  9. GSI. (2002). Geological Map 53 N series. Geological Survey of India.Google Scholar
  10. Jensen, J. R. (1996). Introductory digital image processing: A remote sensing perspective. New Jersey: Prentice Hall.Google Scholar
  11. Johnson, D. E. (1998). Applied multivariate methods for data analysis. Pacific Grove: Duxbury.Google Scholar
  12. Kanungo, D. P., Arora, M. K., Sarkar, S., & Gupta, R. P. (2006). A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility Zonation in Darjeeling Himalayas. Engineering Geology, 85, 347–366.CrossRefGoogle Scholar
  13. Kleianbum, D. G. (1994). Logistic regression: A self learning text (p. 282). New York: Springer.Google Scholar
  14. Kumar, K. & Sati, D. (2005). Exploring the History of Alaknanda-Patalganga Tragedy of 1970 & Possibility of its Recurrence and Impacts on Patalganga Basin—A GIS and Remote Sensing Based Study. Proceedings of the 8th Annual International Conference, Map India, 2005, New Delhi.Google Scholar
  15. Lee, S., Chwae, U., & Min, K. (2002). Landslide susceptibility mapping by correlation between topography and geological structure: The Janghung area, Korea. Geomorphology, 46, 149–162.CrossRefGoogle Scholar
  16. Mathew, J., Jha, V. K., & Rawat, G. S. (2007). Weights of evidence modelling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand. Current Science, 92(5), 628–638.Google Scholar
  17. Mathew, J., Jha, V. K., & Rawat, G. S. (2009). Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides, 6, 17–26.CrossRefGoogle Scholar
  18. Micheletti, N., Foresti, L., Kanevski, Pedrazzini, M. A. & Jaboyedoff, M. (2011). Landslide susceptibility mapping using adaptive Support Vector Machines and feature selection Geophysical Research Abstracts, EGU, vol. 13, 2011.Google Scholar
  19. Miner, A. S., Vamplew, P., Windle, D. J., Flentje, P., & Warner, P. (2010). A comparative study of various data mining techniques as applied to the modeling of landslide susceptibility on the Bellarine Peninsula, Victoria, Australia. In A. L. Williams, G. M. Pinches, C. Y. Chin, & T. J. McMorran (Eds.), Geologically Active (p. 352). New York: CRC Press.Google Scholar
  20. NDMA. (2009). Management of landslides and snow Avalanches 2009 (p. 144). New Delhi: National Disaster Management Authority (NDMA), Government of India.Google Scholar
  21. Nefeslioglu, H. A., Sezer, E., Gokceoglu, C., Bozkir, A. S., & Duman, T. Y. (2010). Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Mathematical Problems in Engineering, 2010(901095), 15. doi: 10.1155/2010/901095.Google Scholar
  22. Ohlmacher, C. G., & Davis, J. C. (2003). Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engineering Geology, 69, 331–343.CrossRefGoogle Scholar
  23. Pradhan, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of Indian Society of Remote Sensing, 38(2), 301–320.CrossRefGoogle Scholar
  24. Pradhan, B., Sezer, E., Gokceoglu, C., & Buchroithner, M. F. (2010). ANFIS modeling for the assessment of landslide susceptibility for the Cameron Highland (Malaysia). Geophysical Research Abstracts, EGU, 12, 2010.Google Scholar
  25. Refice, A., & Capolongo, D. (2002). Probabilistic modeling of uncertainties in earthquake induced landslide hazard assessment. Computers & Geosciences, 28, 735–749.CrossRefGoogle Scholar
  26. Saha, A. K., Gupta, R. P., & Arora, M. K. (2002). GIS based landslide susceptibility zonation in part of the Himalayas. International Journal of Remote Sensing, 23, 357–369.CrossRefGoogle Scholar
  27. Saha, A. K., Gupta, R. P., Sarkar, I., Arora, M. K., & Csaplovics, E. (2005). An approach for GIS-based statistical landslide susceptibility zonation with a case study in the Himalayas. Landslides, 2, 61–69.CrossRefGoogle Scholar
  28. Saito, H., Nakayama, D., & Matsuyama, H. (2009). Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains, Japan. Geomorphology, 109(3–4), 108–121.CrossRefGoogle Scholar
  29. Samui, P. (2008). Slope stability analysis: A support vector machine approach. Environmental Geology, 56(2), 255–267.CrossRefGoogle Scholar
  30. Sharma, M., & Kumar, R. (2008). GIS-based landslide hazard zonation: A case study from the Parwanoo area, Lesser and Outer Himalaya, H.P., India. Bulletin of Engineering Geology and the Environment, 67, 129–137.CrossRefGoogle Scholar
  31. Sinha, B. N., Varma, R. S., & Paul, D. K. (1975). Landslides in Darjeeling district (West Bengal) and adjacent areas. Bulletin of Geological Survey of India, Serial No B, 36, 1–45.Google Scholar
  32. Soria, D., Garibaldi, J. M., Ambrogi, F., Biganzoli, E. M., & Ellis, I. O. (2011). A non-parametric version of the naive Bayes classifier. Knowledge-Based Systems, 24(6), 775–784.CrossRefGoogle Scholar
  33. Suzen, M. L., & Doyuran, V. (2004). A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environmental Geology, 45, 665–679.CrossRefGoogle Scholar
  34. Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293.CrossRefGoogle Scholar
  35. Tien Bui, D., Lofman, O., Revhaug, I., & Dick, O. (2011). Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Natural Hazards, 59, 1413–1444.CrossRefGoogle Scholar
  36. Tien Bui, D., Pradhan, B., Lofman, O., & Revhaug, I. (2012). Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and Naive Bayes Models. Mathematical Problems in Engineering, 12(974638), 26. doi: 10.1155/2012/974638.Google Scholar
  37. Terlien, M. T. J., Van Westen, C. J., & Van Asch, T. W. J. (1995). Deterministic modelling in GIS-based landslide hazard assessment. In A. Carrara & F. Guzzetti (Eds.), Geographical information systems in assessing natural hazards (pp. 57–77). Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
  38. Tzu-Tsung, W. (2012). A hybrid discretization method for naive Bayesian classifiers. Pattern Recognition, 45(6), 2321–2325.CrossRefGoogle Scholar
  39. Vanwalleghem, T., Van Den Eeckhaut, M., Poesen, J., Govers, G., & Deckers, J. (2008). Spatial analysis of factors controlling the presence of closed depressions and gullies under forest: Application of rare event logistic regression. Geomorphology, 95(15), 504–517.CrossRefGoogle Scholar
  40. Van Westen, C. J., Rengers, N., & Soeters, R. (2003). Use of geomorphological information in indirect landslide susceptibility assessment. Natural Hazards, 30(3), 399–419.CrossRefGoogle Scholar
  41. Wan, S., & Lei, T. C. (2009). A knowledge-based decision support system to analyze the debris-flow problems at Chen-Yu-Lan River, Taiwan. Knowledge-Based Systems, 22(8), 580–588.CrossRefGoogle Scholar
  42. Yeon, Y. K., Han, J. G., & Ryu, K. H. (2010). Landslide susceptibility mapping in Injae, Korea, using a decision tree. Engineering Geology, 116(3–4), 274–283.CrossRefGoogle Scholar
  43. Yilmaz, I. (2010). Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and Support Vector Machine. Environmental Earth Sciences, 61(4), 821–836.CrossRefGoogle Scholar
  44. Yin, K. L. and Yan, T. Z. (1988). Statistical prediction model for slope instability of metamorphosed rocks. In: Proceedings of 5th International Symposium on Landslides, Lausanne, Switzerland, 2, 1269–1272.Google Scholar

Copyright information

© Indian Society of Remote Sensing 2013

Authors and Affiliations

  • S. Kundu
    • 1
    • 2
  • A. K. Saha
    • 3
  • D. C. Sharma
    • 2
  • C. C. Pant
    • 1
  1. 1.Department of GeologyKumaun UniversityNainitalIndia
  2. 2.Defence Institute of Geospatial Information and TrainingDelhiIndia
  3. 3.Department of GeographyUniversity of DelhiDelhiIndia

Personalised recommendations