Reproductive Medicine and Biology

, Volume 13, Issue 2, pp 87–94 | Cite as

Sperm DNA fragmentation assay by sperm chromatin dispersion (SCD): correlation between DNA fragmentation and outcome of intracytoplasmic sperm injection

  • T. Sivanarayana
  • Ch. Ravi Krishna
  • G. Jaya Prakash
  • K. M. Krishna
  • K. Madan
  • G. Sudhakar
  • G. A. Rama Raju
Original Article

Abstract

Purpose

The aim of the present study was to investigate the relationship between sperm DNA fragmentation index (sDFI) and outcome of intracytoplasmic sperm injection (ICSI).

Methods

All the patients were divided into two groups based on sperm DNA fragmentation analysis by the sperm chromatin dispersion (SCD) method. A total of 237 patients were in the DNA fragmentation normal group (sDFI ≤ 30 %), and 140 patients were in the DNA fragmentation abnormal group (sDFI ≥ 30 %). The relationship of sDFI with the outcome of ICSI was analyzed.

Results

A significant difference in semen parameters was observed between the DNA fragmentation normal and abnormal groups [count, motility and morphology (p < 0.05)]. However, no significant difference was seen between the number of oocytes retrieved and fertilization rates between the two groups, whereas the number of embryos progressed to day 3 and the blastocyst formation rate in the remaining embryos after transfer were significantly more in the DNA fragmentation normal group (p < 0.05). A significant negative correlation was noted between DFI values of more than 30 % and number of pregnancies and deliveries (p < 0.05). A higher DFI was also associated with increased abortion rates.

Conclusions

In the present study, sperm with DNA fragmentation showed a negative correlation with semen parameters. Further, sperm with damaged DNA have potential adverse effects on embryo progression, clinical pregnancy rate, and ongoing pregnancies.

Keywords

Abortion rates Clinical pregnancy DNA fragmentation Embryo formation rates  Intracytoplasmic sperm injection SCD 

References

  1. 1.
    Avendano C, Franchi A, Taylor S, Morshedi M, Bocca S, Oehninger S. Fragmentation of DNA in morphologically normal human spermatozoa. Fertil Steril. 2009;91:1077–84.CrossRefPubMedGoogle Scholar
  2. 2.
    Avendano C, Oehninger S. DNA fragmentation in morphologically normal spermatozoa: how much should we be concerned in the ICSI era? J Androl. 2011;32:356–63.CrossRefPubMedGoogle Scholar
  3. 3.
    Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, de Angelis P, Claussen OP. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14:1039–49.CrossRefPubMedGoogle Scholar
  4. 4.
    Duran EH, Morshedi M, Taylor S, Oehninger S. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod. 2002;17:3122–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, Giwercman A. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22:174–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Collins JA, Barnhart KT, Schlegel PN. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril. 2008;89:823–31.CrossRefPubMedGoogle Scholar
  7. 7.
    Evenson DP, Larson KL, Jost LK. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparison with other techniques. J Androl. 2002;23:25–43.PubMedGoogle Scholar
  8. 8.
    Saleh RA, Agarwal A, Nelso DR, Nada EA, El-Tonsy MH, Alvarez JG, Thomas AJ, Sharma RK. Increased sperm nuclear DNA damage in normozoospermic infertile men: a prospective study. Fertil Steril. 2002;78:313–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Seli E, Sakkas D. Spermatozoal nuclear determinants of reproductive outcome: implications for ART. Hum Reprod Update. 2005;11:337–49.CrossRefPubMedGoogle Scholar
  10. 10.
    Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online. 2007;14:727–33.CrossRefPubMedGoogle Scholar
  11. 11.
    Sivanarayana T, Krishna ChR, Prakash GJ, Krishna KM, Madan K, Rani BS, Sudhakar G, Raju GA. CASA derived human sperm abnormalities: correlation with chromatin packing and DNA fragmentation. J Assist Reprod Genet. 2012;29:1327–34.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Ashwood-Smith MJ, Edwards RG. DNA repair by oocytes. Hum Reprod. 1996;2:46–51.CrossRefGoogle Scholar
  13. 13.
    Kruger TF, Ackerman SB, Simmons KF, Swanson RJ, Brugo SS, Acosta AA. A quick, reliable staining technique for human sperm morphology. Arch Androl. 1987;18:275–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Rama Raju GA, Jaya Prakash G, Murali Krishna K, Madan K, Siva Narayana T, Ravi Krishna CH, et al. Noninsulin-dependent diabetes mellitus: effects on sperm morphological and functional characteristics, nuclear DNA integrity and outcome of assisted reproductive technique. Andrologia. 2012;44:490–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Veeck LL Atlas of human oocytes and early conceptus, vol 2. Baltimore: Williams and Wilkins; 1991. pp. 427–444.Google Scholar
  16. 16.
    Rama Raju GA, Jaya Prakash G, Murali Krishna K, Madan K. Vitrification of human early cavitating and deflated expanded blastocysts: clinical outcome of 474 cycles. J Assist Reprod Genet. 2009;26:523–9.CrossRefGoogle Scholar
  17. 17.
    Benchaib M, Braun V, Lornage J, Hadj S, Salle B, Lejeune H, Guerin JF. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod. 2003;18:1023–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod. 2004;19:611–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Borini A, Tarozzi N, Bizzaro D, Bonu MA, Fava L, Flamigni C, Coticchio G. Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod. 2006;21:2876–81.CrossRefPubMedGoogle Scholar
  20. 20.
    Muriel L, Garrido N, Fernandez JL, Remohi J, Pellicer A, de los Santos MJ, Meseguer M, et al. Value of the sperm deoxyribonucleic acid fragmentation level, as measured by the sperm chromatin dispersion test, in the outcome of in vitro fertilization and intracytoplasmic injection. Fertil Steril. 2006;85:371–83.CrossRefPubMedGoogle Scholar
  21. 21.
    Marchetti F, Essers J, Kanaar R, Wyrobek AJ. Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. Proc Natl Acad Sci. 2007;104:17725–9.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Katz DF, Diel L, Overstreet JW. Differences in the movement of morphologically normal and abnormal human seminal spermatozoa. Biol Reprod. 1982;26:566–70.CrossRefPubMedGoogle Scholar
  23. 23.
    Agarwal A, Allamaneni SS. Sperm DNA damage assessment: a test whose time has come. Fertil Steril. 2005;84:850–3.CrossRefPubMedGoogle Scholar
  24. 24.
    Moruzzi JF, Wyrobek AJ, Mayall BH, Gledhill BL. Quantification and classification of human sperm morphology by computer assisted image analysis. Fertil Steril. 1988;50:142–52.PubMedGoogle Scholar
  25. 25.
    Perez-Sanchez F, De Monserrat JJ, Soler C. Morphometric analysis of human sperm morphology. Int J Androl. 1994;17:248–55.CrossRefPubMedGoogle Scholar
  26. 26.
    Kruger TF, Menkveld R, Stander FS, Lombard CJ, Vander Merwe JP, Vanzyl JA, Smith K. Sperm morphologic features as a prognostic factor in in vitro fertilization. Fertil Steril. 1986;46:1118–23.PubMedGoogle Scholar
  27. 27.
    Zhang Y, Wang H, Wang L, Zhou Z, Sha J, Mao Y, Cai L, Feng T, Yan Z, Ma L, Liu J. The clinical significance of sperm DNA damage detection combined with routine semen testing in assisted reproduction. Mol Med Rep. 2008;1:617–24.PubMedGoogle Scholar
  28. 28.
    Wistuba J, Stukenberg JB, Luetjens CM. Mammalian spermatogenesis. Funct Dev Embryol. 2007;1:99–117.Google Scholar
  29. 29.
    Henkel R, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, Menkveld R, Gips H, Schill WB, Kruger TF. Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil Steril. 2004;81:965–72.CrossRefPubMedGoogle Scholar
  30. 30.
    Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82:378–83.CrossRefPubMedGoogle Scholar
  31. 31.
    Zini A, Meriano J, Kader K, Jarvi K, Laskin CA, Cadesky K. Potential adverse effect of sperm DNA damage on embryo quality after ICSI. Hum Reprod. 2005;20:3476–80.CrossRefPubMedGoogle Scholar
  32. 32.
    Ahmadi A, Ng SC. Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool. 1999;284:696–704.CrossRefPubMedGoogle Scholar
  33. 33.
    Fatehi AN, Bevers MM, Schoevers E, Roelen BA, Colenbrander B, Gadella BM. DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages. J Androl. 2006;27:176–88.CrossRefPubMedGoogle Scholar
  34. 34.
    Avendano C, Franchi A, Duran H, Oehninger S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril. 2010;94:549–57.CrossRefPubMedGoogle Scholar
  35. 35.
    Jiang H, He RB, Wang CL, Zhu J. The relationship of sperm DNA fragmentation index with the outcomes of in vitro fertilization embryo transfer and intracytoplasmic sperm injection. J Obstet Gynaecol. 2011;31:636–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Sun JG, Jurisicova A, Camper RF. Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod. 1997;56:602–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Lopes S, Sun JC, Jurisicova A, Meriano J, Casper RF. Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil Steril. 1998;69:528–32.CrossRefPubMedGoogle Scholar
  38. 38.
    Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81:1289–95.CrossRefPubMedGoogle Scholar
  39. 39.
    Simon L, Castillo J, Oliva R, Lewis SE. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod Biomed Online. 2011;23:724–34.CrossRefPubMedGoogle Scholar
  40. 40.
    Twigg JP, Irvine DS, Aitken RJ. Oxidative damage to DNA in human spermatozoa does not preclude pronucleus formation at intracytoplasmic sperm injection. Hum Reprod. 1998;13:1864–71.CrossRefPubMedGoogle Scholar
  41. 41.
    Morris ID, Ilott S, Dixon L, Brison DR. The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet Assay) and its relationship to fertilization and embryo development. Hum Reprod. 2002;17:990–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Tesarik J, Mendoza C, Greco E. Paternal effects acting during the first cell cycle of human preimplantation development after ICSI. Hum Reprod. 2002;17:184–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Jurisicova A, Acton BM. Deadly decisions: the role of genes regulating programmed cell death in human preimplantation embryo development. Reproduction. 2004;128:281–91.CrossRefPubMedGoogle Scholar
  44. 44.
    Van Royen E, Mangelschots K, Vercruyssen M, De Neubourg D, Valkenburg M, Rychaert G, Gerris J. Multinucleation in cleavage stage embryos. Hum Reprod. 2003;18:1062–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Hnida C, Engenheiro E, Ziebe S. Computer-controlled, multilevel, morphometric analysis of blastomere size as biomarker of fragmentation and multinuclearity in human embryos. Hum Reprod. 2004;19:288–93.CrossRefPubMedGoogle Scholar
  46. 46.
    Larson-Cook KL, Brannian JD, Hansen KA, Kasperson KM, Aamold ET, Evenson DP. Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril. 2003;80:895–902.CrossRefPubMedGoogle Scholar
  47. 47.
    Boe-Hanson GB, Fedder J, Ersboll AK, Christensen P. The sperm chromatin structure assay as a diagnostic tool in the human fertility clinic. Hum Reprod. 2006;21:1576–82.CrossRefGoogle Scholar
  48. 48.
    Lin MH, Kuo-Kuang Lee R, Li SH, Lu CH, Sun FJ, Hwu YM, et al. Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytoplasmic sperm injection, but might be related to spontaneous abortion rates. Fertil Steril. 2008;90:352–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Gandini L, Lombardo F, Paoli D, Caruso F, Eleuteri P, Leter G, Ciriminna R, Culasso F, Dondero F, Lenzi A, Spano M. Full-term pregnancies achieved with ICSI despite high levels of sperm chromatin damage. Hum Reprod. 2004;19:1409–17.CrossRefPubMedGoogle Scholar
  50. 50.
    Payne JF, Raburn DJ, Couchman GM, Price TM, Jamison MG, Walmer DK. Redefining the relationship between sperm deoxyribonucleic acid fragmentation as measured by the sperm chromatin structure assay and outcomes of assisted reproductive techniques. Fertil Steril. 2005;84:356–64.CrossRefPubMedGoogle Scholar
  51. 51.
    Esbert M, Pacheco A, Vidal F, Florensa M, Riqueros M, Ballesteros A, Garrido N, Calderon G. Impact of sperm DNA fragmentation on the outcome of IVF with own or donated oocytes. Reprod Biomed Online. 2011;23:704–10.CrossRefPubMedGoogle Scholar
  52. 52.
    Kurinczuk JJ, Bower C. Birth defects in infants conceived by intracytoplasmic sperm injection: an alternative interpretation. BMJ. 1997;315:1260–5.CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Olson CK, Keppler-Noreuil KM, Romitti PA, Budelier WT, Ryan G, Sparks AE, Van Voorhis BJ. In vitro fertilization is associated with an increase in major birth defects. Fertil Steril. 2005;84:1308–15.CrossRefPubMedGoogle Scholar
  54. 54.
    Wen J, Jiang J, Ding C, Dai J, Liu Y, Xia Y, Liu J, Hu Z. Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: a meta-analysis. Fertil Steril. 2012;97:1331–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Hansen M, Kurinczuk JJ, Bower C, Webb S. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med. 2002;346:725–30.CrossRefPubMedGoogle Scholar
  56. 56.
    Menezo Y, Russo G, Tosti E, El Mouatassim S, Benkhalifa M. Expression profile of genes coding for DNA repair in human oocytes using pangenomic microarrays, with a special focus on ROS linked decays. J Assist Reprod Genet. 2007;24:513–20.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Japan Society for Reproductive Medicine 2013

Authors and Affiliations

  • T. Sivanarayana
    • 3
    • 4
  • Ch. Ravi Krishna
    • 3
  • G. Jaya Prakash
    • 2
  • K. M. Krishna
    • 2
  • K. Madan
    • 2
  • G. Sudhakar
    • 4
  • G. A. Rama Raju
    • 1
  1. 1.Gynecology DivisionKrishna IVF ClinicVisakhapatnamIndia
  2. 2.Embryology Research GroupKrishna IVF ClinicVisakhapatnamIndia
  3. 3.Genetics DepartmentKrishna IVF ClinicVisakhapatnamIndia
  4. 4.Department of Human GeneticsAndhra UniversityVisakhapatnamIndia

Personalised recommendations