Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Identifying the bone-breaker at the Navalmaíllo Rock Shelter (Pinilla del Valle, Madrid) using machine learning algorithms

Abstract

In recent years, reports on bone breakage at archaeological sites have become more common in the taphonomic literature. The present work tests a recently published method, based on the use of machine learning algorithms for analysing the processes involved in bone breakage, to identify the agent that broke the bones of medium-sized animals at the Mousterian Navalmaíllo Rock Shelter (Pinilla del Valle, Madrid). This is the first time this method has been used in an archaeological setting. The results show that these bones were mostly broken by anthropic action, while some were slightly ravaged by carnivores, probably hyaenas. These findings agree very well with published interpretations of the site, and show the method used to be useful in taphonomic studies of archaeological materials with poorly preserved cortical surfaces.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abe Y, Marean CW, Nilssen PJ et al (2002) The analysis of cutmarks on archaeofauna: a review and critique of quantification procedures, and a new image-analysis GIS approach. Am Antiq 67:643–663. https://doi.org/10.2307/1593796

  2. Abrunhosa A, Márquez B, Baquedano E et al (2014) Raw material study of the Mousterian lithic assemblage of Navalmaíllo rockshelter (Pinilla del Valle, Spain): preliminary results. Estudos do Quaternário Revista da Associação Portuguesa para o Estudo do Quaternário 11:19–25

  3. Abrunhosa A, Pereira T, Márquez B et al (2019) Understanding Neanderthal technological adaptation at Navalmaíllo Rock Shelter (Spain) by measuring lithic raw materials performance variability. Archaeol Anthropol Sci 11:5949–5962. https://doi.org/10.1007/s12520-019-00826-3

  4. Alcántara García V, Barba Egido R, Barral del Pino JM et al (2006) Determinación de procesos de fractura sobre huesos frescos: un sistema de análisis de los ángulos de los planos de fracturación como discriminador de agentes bióticos. Trab Prehist 63:37–45

  5. Alférez F, Brea P, Buitrago AM et al (1982) Descubrimiento del primer yacimiento cuaternario (Riss-Würm) de vertebrados con restos humanos en la provincia de Madrid (Pinilla del Valle). Coloquios de Paleontología 37:15–32. https://doi.org/10.5209/rev_COPA.1982.v37.35543

  6. Álvarez-Lao D, Arsuaga JL, Baquedano E, Pérez-González A (2013) Last Interglacial (MIS 5) ungulate assemblage from the Central Iberian Peninsula: the Camino Cave (Pinilla del Valle, Madrid, Spain). Paleogeogr Paleoclimatol Paleoecol 374:327–337

  7. Análisis y Gestión del Subsuelo S.L. [AGS] (2006) Prospección geofísica para la caracterización del subsuelo en las excavaciones de Pinilla del Valle (Madrid). c/ Luxemburgo no 4, portal 1, oficina 3. 28224-Pozuelo de Alarcón, Madrid, Spain

  8. Andrés M, Gidna A, Yravedra J, Domínguez-Rodrigo M (2013) A study of dimensional differences of tooth marks (pits and scores) on bones modified by small and large carnivores. Archaeol Anthropol Sci 4:209–219

  9. Andrews P, Cook J (1985) Natural modifications to bones in a temperate setting. Man 20(4):675–691. https://doi.org/10.2307/2802756

  10. Aramendi J, Maté-González MA, Yravedra J et al (2017) Discerning carnivore agency through the three-dimensional study of tooth pits: revisiting crocodile feeding behaviour at FLK- Zinj and FLK NN3 (Olduvai Gorge, Tanzania). Palaeogeogr Palaeoclimatol Palaeoecol 488:93–102. https://doi.org/10.1016/j.palaeo.2017.05.021

  11. Arilla M, Rosell J, Blasco R et al (2014) The “bear” essentials: actualistic research on Ursus arctos arctos in the Spanish Pyrenees and its implications for paleontology and archaeology. PLoS One 9:e102457. https://doi.org/10.1371/journal.pone.0102457

  12. Arriaza MC, Domínguez-Rodrigo M (2016) When felids and hominins ruled at Olduvai Gorge: a machine learning analysis of the skeletal profiles of the non-anthropogenic Bed I sites. Quat Sci Rev 139:43–52. https://doi.org/10.1016/j.quascirev.2016.03.005

  13. Arriaza MC, Domínguez-Rodrigo M, Yravedra J, Baquedano E (2016) Lions as bone accumulators? Paleontological and ecological implications of a modern bone assemblage from Olduvai Gorge. PLoS One 11. https://doi.org/10.1371/journal.pone.0153797

  14. Arriaza MC, Huguet R, Laplana C et al (2017a) Lagomorph predation represented in a middle Palaeolithic level of the Navalmaíllo Rock Shelter site (Pinilla del Valle, Spain), as inferred via a new use of classical taphonomic criteria. Quat Int 436:294–306. https://doi.org/10.1016/j.quaint.2015.03.040

  15. Arriaza MC, Yravedra J, Domínguez-Rodrigo M et al (2017b) On applications of micro-photogrammetry and geometric morphometrics to studies of tooth mark morphology: the modern Olduvai Carnivore Site (Tanzania). Palaeogeogr Palaeoclimatol Palaeoecol 488:103–112. https://doi.org/10.1016/j.palaeo.2017.01.036

  16. Arsuaga JL, Baquedano E, Pérez-González A (2009) Neanderthal and carnivore occupations in Pinilla del Valle sites (Community of Madrid, Spain). In: Oosterbeek L (ed) Proceedings of the XV World Congress of the International Union for Prehistoric and Protohistoric Sciences. Lisbonne, pp 111–119

  17. Arsuaga JL, Baquedano E, Pérez-González A et al (2010) El yacimiento arqueopaleontológico del Pleistoceno Superior de la Cueva del Camino en el Calvero de la Higuera (Pinilla del Valle, Madrid). Zona Arqueológica 13:421–442

  18. Arsuaga JL, Baquedano E, Pérez-González A (2011) Neanderthal and carnivore occupations in Pinilla del Valle sites (Community of Madrid, Spain). In: Oosterbeek L, Fidalgo C (eds) Proceedings of the XV World Congress of the International Union for Prehistoric and Protohistoric Sciences. Archaeopress, Inglaterra, pp 111–119

  19. Arsuaga JL, Baquedano E, Pérez-González A et al (2012) Understanding the ancient habitats of the last-interglacial (late MIS 5) Neanderthals of central Iberia: Paleoenvironmental and taphonomic evidence from the Cueva del Camino (Spain) site. Quat Int 275:55–75. https://doi.org/10.1016/j.quaint.2012.04.019

  20. Baquedano E, Arsuaga JL, Pérez-González A (2010) Homínidos y carnívoros: competencia en un mismo nicho ecológico pleistoceno: los yacimientos del Calvero de la Higuera en Pinilla del Valle. Actas de las Quintas Jornadas de Patrimonio Arqueológico en la Comunidad de Madrid 61–72

  21. Baquedano E, Domínguez-Rodrigo M, Musiba C (2012a) An experimental study of large mammal bone modification by crocodiles and its bearing on the interpretation of crocodile predation at FLK Zinj and FLK NN3. J Archaeol Sci 39:1728–1737. https://doi.org/10.1016/j.jas.2012.01.010

  22. Baquedano E, Márquez B, Pérez-González A et al (2012b) Neandertales en el valle del Lozoya: los yacimientos paleolíticos del Calvero de la Higuera (Pinilla del Valle, Madrid). Mainake:83–100

  23. Baquedano E, Márquez B, Laplana C et al (2014) The archaeological sites at Pinilla del Valle: (Madrid, Spain). In: Sala R (ed) Pleistocene and Holocene hunter-gatherers in Iberia and the Gibraltar strait: the current archaeological record. Fundación Atapuerca, Burgos, pp 577–584

  24. Baquedano E, Arsuaga JL, Pérez-González A et al (2016) The Des-Cubierta Cave (Pinilla del Valle, Comunidad de Madrid, Spain): a Neanderthal site with a likely funerary/realistic connection. Alcalá de Henares

  25. Barone R (1976) Anatomie comparée des mamiferes domestiques: Ostéologie. Vigot Frères, Paris

  26. Behrensmeyer AK, Kathleen DG, Yanagi GT (1986) Trampling as a cause of bone surface damage and pseudocutmarks. Nature 319:768–771. https://doi.org/10.1038/319768a0

  27. Bello SM, Soligo C (2008) A new method for the quantitative analysis of cutmark micromorphology. J Archaeol Sci 35:1542–1552. https://doi.org/10.1016/j.jas.2007.10.018

  28. Bello SM, Parfitt SA, Stringer C (2009) Quantitative micromorphological analyses of cut marks produced by ancient and modern handaxes. J Archaeol Sci 36:1869–1880. https://doi.org/10.1016/j.jas.2009.04.014

  29. Binford LR (1978) Nunamiut Ethnoarchaeology. Academic Press, New York

  30. Binford LR (1981) Bones: ancient men and modern myths. Academic Press, New York

  31. Blain H-A, Laplana C, Sevilla P et al (2014) MIS 5/4 transition in a mountain environment: herpetofaunal assemblages from Cueva del Camino, central Spain. Boreas 43:107–120. https://doi.org/10.1111/bor.12024

  32. Blasco R, Rosell J, Fernández Peris J et al (2008) A new element of trampling: an experimental application on the Level XII faunal record of Bolomor Cave (Valencia, Spain). J Archaeol Sci 35:1605–1618. https://doi.org/10.1016/j.jas.2007.11.007

  33. Blasco R, Domínguez-Rodrigo M, Arilla M et al (2014) Breaking bones to obtain marrow: a comparative study between percussion by batting bone on an anvil and hammerstone percussion. Archaeometry 56:1085–1104. https://doi.org/10.1111/arcm.12084

  34. Blumenschine RJ (1988) An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. J Archaeol Sci 15:483–502. https://doi.org/10.1016/0305-4403(88)90078-7

  35. Blumenschine RJ (1995) Percussion marks, tooth marks, and experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. J Hum Evol 29:21–51. https://doi.org/10.1006/jhev.1995.1046

  36. Blumenschine RJ, Selvaggio MM (1988) Percussion marks on bone surfaces as a new diagnostic of hominid behaviour. Nature 333:763–765. https://doi.org/10.1038/333763a0

  37. Blumenschine RJ, Marean CW, Capaldo SD (1996) Blind tests of inter-analyst correspondence and accuracy in the identification of cut marks, percussión marks, and carnivore toothmarks on bone surfaces. J Archaeol Sci 23:493–507

  38. Braun DR, Pante M, Archer W (2016) Cut marks on bone surfaces: influences on variation in the form of traces of ancient behaviour. Interface Focus 6:20160006. https://doi.org/10.1098/rsfs.2016.0006

  39. Bromage TG, Boyde A (1984) Microscopic criteria for the determination of directionality of cutmarks on bone. Am J Phys Anthropol 65:359–366. https://doi.org/10.1002/ajpa.1330650404

  40. Bunn HT (1981) Archaeological evidence for meat-eating by Plio-Pleistocene hominids from Koobi Fora and Olduvai Gorge. Nature 291:574–577. https://doi.org/10.1038/291574a0

  41. Bunn HT (1982) Meat eating and human evolution: studies on the diet and subsistence patterns of Plio-Pleiostecene hominids in East Africa. University of California, California

  42. Bunn HT, Ezzo JA (1993) Hunting and scavenging by Plio-Pleistocene hominids: nutritional constraints, archaeological patterns, and behavioural implications. J Archaeol Sci 20:365–398. https://doi.org/10.1006/jasc.1993.1023

  43. Bunn HT, Kroll EM, Ambrose SH et al (1986) Systematic butchery by Plio/Pleistocene hominids at Olduvai Gorge, Tanzania [and comments and reply]. Curr Anthropol 27:431–452. https://doi.org/10.1086/203467

  44. Capaldo SD, Blumenschine RJ (1994) A quantitative diagnosis of notches made by hammerstone percussion and carnivore gnawing in bovid long bones. Am Antiq 59:724–748

  45. Coil R, Tappen M, Yezzi-Woodley K (2017) New analytical methods for comparing bone fracture angles: a controlled study of hammerstone and hyena (Crocuta crocuta) long bone breakage. Archaeometry 59:900–917. https://doi.org/10.1111/arcm.12285

  46. Costamagno S, Rigaud J-P (2014) L’exploitation de la graisse au Paléolithique. In: Costamagno S (ed) Histoire de l’alimentation humaine : entre choix et contraintes (édition électronique). CTHS, París, pp 134–152

  47. Courtenay LA, Yravedra J, Mate-González MÁ et al (2017) 3D analysis of cut marks using a new geometric morphometric methodological approach. Archaeol Anthropol Sci 11:1–15. https://doi.org/10.1007/s12520-017-0554-x

  48. Courtenay LA, Yravedra J, Huguet R et al (2018) New taphonomic advances in 3D digital microscopy: a morphological characterisation of trampling marks. Quat Int 517:55–66. https://doi.org/10.1016/j.quaint.2018.12.019

  49. Courtenay LA, Yravedra J, Huguet R et al (2019) Combining machine learning algorithms and geometric morphometrics: a study of carnivore tooth marks. Palaeogeogr Palaeoclimatol Palaeoecol 522:28–39. https://doi.org/10.1016/j.palaeo.2019.03.007

  50. de Juana S, Galán AB, Domínguez-Rodrigo M (2010) Taphonomic identification of cut marks made with lithic handaxes: an experimental study. J Archaeol Sci 37:1841–1850. https://doi.org/10.1016/j.jas.2010.02.002

  51. Dewbury AG, Russell N (2007) Relative frequency of butchering cutmarks produced by obsidian and flint: an experimental approach. J Archaeol Sci 34:354–357. https://doi.org/10.1016/j.jas.2006.05.009

  52. Domıínguez-Rodrigo M, Piqueras A (2003) The use of tooth pits to identify carnivore taxa in tooth-marked archaeofaunas and their relevance to reconstruct hominid carcass processing behaviours. J Archaeol Sci 30:1385–1391. https://doi.org/10.1016/S0305-4403(03)00027-X

  53. Domínguez-Rodrigo M (1997) A reassessment of the study of cut mark patterns to infer hominid manipulation of fleshed carcasses at the FLK Zinj 22 site, Olduvai Gorge, Tanzania. Trab Prehist 54(2):29–42. https://doi.org/10.3989/tp.1997.v54.i2.364

  54. Domínguez-Rodrigo M (2002) Hunting and scavenging by early humans: the state of the debate. J World Prehist 16:1–54. https://doi.org/10.1023/A:1014507129795

  55. Domínguez-Rodrigo M (2015) Taphonomy in early African archaeological sites: questioning some bone surface modification models for inferring fossil hominin and carnivore feeding interactions. J Afr Earth Sci 108:42–46. https://doi.org/10.1016/j.jafrearsci.2015.04.011

  56. Domínguez-Rodrigo M (2018) Successful classification of experimental bone surface modifications (BSM) through machine learning algorithms: a solution to the controversial use of BSM in paleoanthropology? Archaeol Anthropol Sci 11:2711–2725. https://doi.org/10.1007/s12520-018-0684-9

  57. Domínguez-Rodrigo M, Baquedano E (2018) Distinguishing butchery cut marks from crocodile bite marks through machine learning methods. Sci Rep 8:5786. https://doi.org/10.1038/s41598-018-24071-1

  58. Domínguez-Rodrigo M, Barba R (2006) New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: the carnivore-hominid-carnivore hypothesis falsified. J Hum Evol 50:170–194. https://doi.org/10.1016/j.jhevol.2005.09.005

  59. Domínguez-Rodrigo M, Martínez-Navarro B (2012) Taphonomic analysis of the early Pleistocene (2.4 Ma) faunal assemblage from A.L. 894 (Hadar, Ethiopia). J Hum Evol 62:315–327

  60. Domínguez-Rodrigo M, Pickering TR (2010) A multivariate approach for discriminating bone accumulations created by spotted hyenas and leopards: harnessing actualistic data from east and Southern Africa. J Taphonomy 8:155–179

  61. Domínguez-Rodrigo M, Yravedra J (2009) Why are cut mark frequencies in archaeofaunal assemblages so variable? A multivariate analysis. J Archaeol Sci 36:884–894. https://doi.org/10.1016/j.jas.2008.11.007

  62. Domínguez-Rodrigo M, Rayne Pickering T, Semaw S, Rogers MJ (2005) Cutmarked bones from Pliocene archaeological sites at Gona, Afar, Ethiopia: implications for the function of the world’s oldest stone tools. J Hum Evol 48:109–121. https://doi.org/10.1016/j.jhevol.2004.09.004

  63. Domínguez-Rodrigo M, Egeland CP, Barba R (2007) The “physical attribute” taphonomic approach. In: Deconstructing Olduvai. Springer, Dordrecht, pp 23–32

  64. Domínguez-Rodrigo M, de Juana S, Galán AB, Rodríguez M (2009) A new protocol to differentiate trampling marks from butchery cut marks. J Archaeol Sci 36:2643–2654. https://doi.org/10.1016/j.jas.2009.07.017

  65. Domínguez-Rodrigo M, Saladié P, Cáceres I et al (2017) Use and abuse of cut mark analyses: the Rorschach effect. J Archaeol Sci 86:14–23. https://doi.org/10.1016/j.jas.2017.08.001

  66. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26. https://doi.org/10.1214/aos/1176344552

  67. Egeland CP, Domínguez-Rodrigo M (2008) Taphonomic perspectives on hominid site use and foraging strategies during Bed II times at Olduvai Gorge, Tanzania. J Hum Evol 55:1031–1052. https://doi.org/10.1016/j.jhevol.2008.05.021

  68. Egeland CP, Domínguez-Rodrigo M, Barba R (2007) The hunting-versus-scavenging debate. In: Domínguez-Rodrigo M, Egido RB, Egeland CP (eds) Deconstructing Olduvai: a taphonomic study of the bed I sites. Springer, Dordrecht, pp 11–22

  69. Egeland CP, Domínguez-Rodrigo M, Pickering TR et al (2018) Hominin skeletal part abundances and claims of deliberate disposal of corpses in the Middle Pleistocene. PNAS 201718678. https://doi.org/10.1073/pnas.1718678115

  70. France DL (2009) Human and non-human bone identification:A color atlas. CRC Press, Boca Raton

  71. Galán AB, Rodríguez M, de Juana S, Domínguez-Rodrigo M (2009) A new experimental study on percussion marks and notches and their bearing on the interpretation of hammerstone-broken faunal assemblages. J Archaeol Sci 36:776–784

  72. Gifford-Gonzalez DP (1989) Ethnographic analogues for interpreting modified bones: some cases from East Africa. In: Bonnichsen R, Sorg MH (eds) Bone modifications. Center for the Study of the First Americans, Institute for Quaternary Studies. University of Maine, Orono, pp 179–246

  73. Greenfield HJ (1999) The origins of metallurgy: distinguishing stone from metal cut-marks on bones from archaeological sites. J Archaeol Sci 26:797–808. https://doi.org/10.1006/jasc.1998.0348

  74. Greenfield HJ (2006) Slicing cut marks on animal bones: diagnostics for identifying stone tool type and raw material. J Field Archaeol 31:147–163

  75. Harris JA, Marean CW, Ogle K, Thompson J (2017) The trajectory of bone surface modification studies in paleoanthropology and a new Bayesian solution to the identification controversy. J Hum Evol 110:69–81. https://doi.org/10.1016/j.jhevol.2017.06.011

  76. Haynes G (1983) Frequencies of spiral and green-bone fractures on ungulate limb bones in modern surface assemblages. Am Antiq 48:102–114. https://doi.org/10.2307/279822

  77. Huguet R, Arsuaga JL, Pérez-González A et al (2010) Homínidos y hienas en el Calvero de la Higuera (Pinilla del Valle, Madrid) durante el Pleistoceno Superior. Resultados preliminares. Zona Arqueológica 13:443–458

  78. James EC, Thompson JC (2015) On bad terms: problems and solutions within zooarchaeological bone surface modification studies. Environ Archaeol 20:89–103. https://doi.org/10.1179/1749631414Y.0000000023

  79. Johnson E (1985) Current developments in bone technology. In: Schiffer MB (ed) Advances in archaeological method and theory. Academic Press, San Diego, pp 157–235

  80. Jones KT, Metcalfe D (1988) Bare bones archaeology: bone marrow indices and efficiency. J Archaeol Sci 15:415–423. https://doi.org/10.1016/0305-4403(88)90039-8

  81. Karampaglidis T (2015) La evolución geomorfológica de la cuenca de drenaje del río Lozoya (Comunidad de Madrid, España). Universidad Complutense de Madrid, Madrid

  82. Kuhn M (2017) Caret: classification and regression training

  83. Kuhn M, Johnson K (2013) Applied predictive modeling. Springer-Verlag, New York

  84. Lantz B (2013) Machine learning with R. Packt Publishing, Birmingham

  85. Laplana C, Blain H-A, Sevilla P et al (2013) Un assemblage de petits vertébrés hautement diversifié de la fin du MSI5 dans un environment montagnard au centre de l’Espagne (Cueva del Camino, Pinilla del Valle, Communauté Autonome de Madrid). Quaternaire 24(2):207–216

  86. Laplana C, Sevilla P, Arsuaga JL et al (2015) How far into Europe did pikas (Lagomorpha: Ochotonidae) go during the Pleistocene? New evidence from Central Iberia. PLoS One 10:e0140513. https://doi.org/10.1371/journal.pone.0140513

  87. Laplana C, Sevilla P, Blain H-A et al (2016) Cold-climate rodent indicators for the Late Pleistocene of Central Iberia: new data from the Buena Pinta Cave (Pinilla del Valle, Madrid Region, Spain). Comptes Rendus Palevol 15:696–706. https://doi.org/10.1016/j.crpv.2015.05.010

  88. Lemon J (2006) Plotrix: a package in the red light district of R. R-News 6(4):8–12

  89. Malet C (2007) L’alimentation lipidique en milieu froid. In: Actes des XVIIIe Rencontres Internationales d’Archéologie et d’Histoire d’Antibes. APDCA - CNRS, Antibes, pp 295–308

  90. Márquez B, Mosquera M, Baquedano E et al (2013) Evidence of a neanderthal-made quartz-based technology at Navalmaíllo rockshelter (Pinilla del Valle, Madrid Region, Spain). J Anthropol Res 69:373–395

  91. Márquez B, Baquedano E, Pérez-González A, et al (2016a) El Abrigo de Navalmaíllo (Pinilla del Valle, Madrid, España). Un campamento de Neandertales en el centro de la Península Ibérica. Alcalá de Henares

  92. Márquez B, Baquedano E, Pérez-González A, Arsuaga JL (2016b) Microwear analysis of Mousterian quartz tools from the Navalmaíllo Rock Shelter (Pinilla del Valle, Madrid, Spain). Quat Int 424:84–97. https://doi.org/10.1016/j.quaint.2015.08.052

  93. Márquez B, Baquedano E, Pérez-González A, Arsuaga JL (2017) Denticulados y muescas: ¿para qué sirven? Estudio funcional de una muestra musteriense en cuarzo del Abrigo de Navalmaíllo (Pinilla del Valle, Madrid, España). Trab Prehist 74(1):26–46

  94. Maté-González MÁ, Yravedra J, González-Aguilera D et al (2015) Micro-photogrammetric characterization of cut marks on bones. J Archaeol Sci 62:128–142. https://doi.org/10.1016/j.jas.2015.08.006

  95. Maté-González MÁ, Yravedra J, Martín-Perea DM et al (2018) Flint and quartzite: distinguishing raw material through bone cut marks. Archaeometry 60:437–452. https://doi.org/10.1111/arcm.12327

  96. Maté-González MÁ, Courtenay LA, Aramendi J et al (2019) Application of geometric morphometrics to the analysis of cut mark morphology on different bones of differently sized animals. Does size really matter? Quat Int 517:33–44. https://doi.org/10.1016/j.quaint.2019.01.021

  97. Metcalfe D, Jones KT (1988) A reconsideration of animal body-part utility indices. Am Antiq 53:486–504. https://doi.org/10.2307/281213

  98. Moclán A, Domínguez-Rodrigo M (2018) An experimental study of the patterned nature of anthropogenic bone breakage and its impact on bone surface modification frequencies. J Archaeol Sci 96:1–13. https://doi.org/10.1016/j.jas.2018.05.007

  99. Moclán A, Huguet R, Márquez B, et al (2017) El Abrigo de Navalmaíllo: nuevos datos preliminares para entender el poblamiento neandertal en la Meseta Ibérica. Aproximación desde la Zooarqueología y la Tafonomía. Burgos, España

  100. Moclán A, Huguet R, Márquez B, et al (2018a) Pinilla del Valle sites: new preliminary data to understand Neanderthal-carnivore interaction in the Iberian Plateau. In: 60th Annual Meeting of the Hugo Obermaier-Society. Hugo Obermaier Society for Quaternary Research and Archaeology of the Stone Age, Tarragona, Spain p 106

  101. Moclán A, Huguet R, Márquez B et al (2018b) Cut marks made with quartz tools: an experimental framework for understanding cut mark morphology, and its use at the Middle Palaeolithic site of the Navalmaíllo Rock Shelter (Pinilla del Valle, Madrid, Spain). Quat Int 493:1–18. https://doi.org/10.1016/j.quaint.2018.09.033

  102. Moclán A, Domínguez-Rodrigo M, Yravedra J (2019) Classifying agency in bone breakage: an experimental analysis of fracture planes to differentiate between hominin and carnivore dynamic and static loading using machine learning (ML) algorithms. Archaeol Anthropol Sci 11(9):4663–4680. https://doi.org/10.1007/s12520-019-00815-6

  103. Njau JK, Blumenschine RJ (2006) A diagnosis of crocodile feeding traces on larger mammal bone, with fossil examples from the Plio-Pleistocene Olduvai Basin, Tanzania. J Hum Evol 50:142–162. https://doi.org/10.1016/j.jhevol.2005.08.008

  104. Olsen SL, Shipman P (1988) Surface modification on bone: trampling versus butchery. J Archaeol Sci 15:535–553. https://doi.org/10.1016/0305-4403(88)90081-7

  105. Pales L, Lambert C (1971) Atlas ostéologique pour servir à l’identification des mammifères du Quaternaire. Editions du centre national de la recherche scientifique, París

  106. Palomeque-González JF, Maté-González MÁ, Yravedra J et al (2017) Pandora: a new morphometric and statistical software for analysing and distinguishing cut marks on bones. J Archaeol Sci Rep 13:60–66. https://doi.org/10.1016/j.jasrep.2017.03.033

  107. Pante MC, Blumenschine RJ, Capaldo SD, Scott RS (2012) Validation of bone surface modification models for inferring fossil hominin and carnivore feeding interactions, with reapplication to FLK 22, Olduvai Gorge, Tanzania. J Hum Evol 63:395–407. https://doi.org/10.1016/j.jhevol.2011.09.002

  108. Parkinson JA (2018) Revisiting the hunting-versus-scavenging debate at FLK Zinj: a GIS spatial analysis of bone surface modifications produced by hominins and carnivores in the FLK 22 assemblage, Olduvai Gorge, Tanzania. Palaeogeogr Palaeoclimatol Palaeoecol 511:29–51. https://doi.org/10.1016/j.palaeo.2018.06.044

  109. Pérez-González A, Karampaglidis T, Arsuaga JL et al (2010) Aproximación geomorfológica a los yacimientos del Pleistoceno Superior del Calvero de la Higuera en el Valle Alto del Lozoya (Sistema Central Español, Madrid). Zona Arqueológica 13:403–420

  110. Pickering TR, Egeland CP (2006) Experimental patterns of hammerstone percussion damage on bones: implications for inferences of carcass processing by humans. J Archaeol Sci 33:459–469. https://doi.org/10.1016/j.jas.2005.09.001

  111. Pickering TR, Domínguez-Rodrigo M, Egeland CP, Brain CK (2005) The contribution of limb bone fracture patterns to reconstructing early hominid behaviour at Swartkrans cave (South Africa): archaeological application of a new analytical method. Int J Osteoarchaeol 15:247–260. https://doi.org/10.1002/oa.780

  112. Pineda A, Saladié P (2018) The Middle Pleistocene site of Torralba (Soria, Spain): a taphonomic view of the Marquis of Cerralbo and Howell faunal collections. Archaeol Anthropol Sci 11:2539–2556. https://doi.org/10.1007/s12520-018-0686-7

  113. Pineda A, Saladié P, Vergès JM et al (2014) Trampling versus cut marks on chemically altered surfaces: an experimental approach and archaeological application at the Barranc de la Boella site (la Canonja, Tarragona, Spain). J Archaeol Sci 50:84–93. https://doi.org/10.1016/j.jas.2014.06.018

  114. Pineda A, Saladié P, Huguet R et al (2017) Changing competition dynamics among predators at the late Early Pleistocene site Barranc de la Boella (Tarragona, Spain). Palaeogeogr Palaeoclimatol Palaeoecol 477:10–26. https://doi.org/10.1016/j.palaeo.2017.03.030

  115. Pineda A, Cáceres I, Saladié P et al (2019) Tumbling effects on bone surface modifications (BSM): an experimental application on archaeological deposits from the Barranc de la Boella site (Tarragona, Spain). J Archaeol Sci 102:35–47. https://doi.org/10.1016/j.jas.2018.12.011

  116. Prendergast ME, Domínguez-Rodrigo M (2008) Taphonomic analyses of a hyena den and a natural-death assemblage near Lake Eyasi (Tanzania). J Taphonomy 6:301–335

  117. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  118. Ringrose TJ (2013) Cabootcrs: bootstrap confidence regions for correspondence analysis

  119. Ruiz Zapata B, García G, José M et al (2015) Vegetación, clima y recursos naturales durante el Pleistoceno Superior en los alrededores del Abrigo de Navalmaíllo (Calvero de la Higuera, Pinilla del Valle, Madrid). Geogaceta 58:115–118

  120. Saint-Germain C (2005) Animal fat in the cultural world of the Native Peoples of Northeastern America. In: Actes du Colloque de l’ICAZ, 2002. Oxbow books, Durham, pp 107–113

  121. Saladié P, Huguet R, Díez C et al (2013) Taphonomic modifications produced by modern brown bears (Ursus arctos). Int J Osteoarchaeol 23:13–33. https://doi.org/10.1002/oa.1237

  122. Schmid E (1972) Atlas of animal bones for prehistorians, archaeologists and quaternary geologists. Elsevier Publishing Company, Amsterdam

  123. Selvaggio MM (1994) Carnivore tooth marks and stone tool butchery marks on scavenged bones: archaeological implications. J Hum Evol 27:215–228. https://doi.org/10.1006/jhev.1994.1043

  124. Shipman P, Rose J (1983) Early hominid hunting, butchering and carcass processing behaviors: approaches to the fossil record. J Anthropol Archaeol 2(1):57–98. https://doi.org/10.1016/0278-4165(83)90008-9

  125. Villa P, Mahieu E (1991) Breakage patterns of human long bones. J Hum Evol 21:27–48. https://doi.org/10.1016/0047-2484(91)90034-S

  126. Wallduck R, Bello SM (2018) Cut mark micro-morphometrics associated with the stage of carcass decay: a pilot study using three-dimensional microscopy. J Archaeol Sci Rep 18:174–185. https://doi.org/10.1016/j.jasrep.2018.01.005

  127. Yravedra J, Domínguez-Rodrigo M, Santonja M et al (2016) The larger mammal palimpsest from TK (Thiongo Korongo), Bed II, Olduvai Gorge, Tanzania. Quat Int 417:3–15. https://doi.org/10.1016/j.quaint.2015.04.013

  128. Yravedra J, Maté-González MÁ, Palomeque-González JF, et al (2017) A new approach to raw material use in the exploitation of animal carcasses at BK (Upper Bed II, Olduvai Gorge, Tanzania): a micro-photogrammetric and geometric morphometric analysis of fossil cut marks. Boreas https://doi.org/10.1111/bor.12224

  129. Yravedra J, Aramendi J, Maté-González MÁ et al (2018) Differentiating percussion pits and carnivore tooth pits using 3D reconstructions and geometric morphometrics. PLoS One 13:e0194324. https://doi.org/10.1371/journal.pone.0194324

Download references

Acknowledgements

The authors are grateful to the Pinilla del Valle research team for archaeopalaeontological discussions, especially A. Abrunhosa, A. Álvarez, D. Álvarez-Lao, M.A. Galindo-Pellicena, N. García-García and M.C. Ortega. The authors are very grateful to those who assisted during the experimental phase, particularly Alicia Caboblanco for her assistance, and Cárnicas DIBE S.L., which provided all the carcasses used in the preparation of the set 1 material. Special thanks are owed to M. Domínguez-Rodrigo who assisted with the statistical analysis. The authors also thank Adrian Burton for language and editing assistance.

Funding

AM is funded by a grant from the Junta de Castilla y León financed in turn by the European Social Funds through the Consejería de Educación (BDNS 376062). This research was conducted as part of competitive projects PGC 2018-094125-B-100 (MCIU/AEI/FEDER, UE), PGC 2018-093925-B-C32 (MICINN-FEDER), AGAUR (2017SGR1040), URV (2014, 2015 and 2016 PFR-URV-B2-17) and funded by the I+D activities program for research groups run by the Education Secretariat of the Madrid Regional Government. The study was also partly funded by the Museo Arqueológico Regional de la Comunidad de Madrid (MAR), Grupo Mahou and Canal de Isabel II-Gestión. This work is a contribution to the Valle de los Neandertales project (H2019/HUM-5840) funded by the Comunidad de Madrid and the Fondo Social Europeo.

Author information

Correspondence to Abel Moclán.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moclán, A., Huguet, R., Márquez, B. et al. Identifying the bone-breaker at the Navalmaíllo Rock Shelter (Pinilla del Valle, Madrid) using machine learning algorithms. Archaeol Anthropol Sci 12, 46 (2020). https://doi.org/10.1007/s12520-020-01017-1

Download citation

Keywords

  • Taphonomy
  • Machine learning
  • Fracture planes
  • Middle Palaeolithic
  • Navalmaíllo Rock Shelter