Advertisement

Obsidian sources from the southern Andean highlands (Laguna del Diamante, Argentina and Chile): geochemical insights on geological complexity and human biogeography

  • Valeria CortegosoEmail author
  • Lucía Yebra
  • Víctor Durán
  • Ramiro Barberena
  • Gustavo Lucero
  • Luis Cornejo
  • Martin Giesso
  • Brandi L. MacDonald
  • Michael D. Glascock
Original Paper

Abstract

New geochemical results for two obsidian types, Laguna del Diamante and Arroyo Paramillos, naturally available in the Laguna del Diamante locality, a seasonally accessible highland wetland emplaced in the current border between Argentina and Chile at 3300 masl (34°S), are presented. A total of 1219 archeological artifacts from 41 sites located on both sides of the Andes have been assigned to these sources. The artifacts were analyzed by non-destructive, energy-dispersive X-ray fluorescence (ED-XRF). Archeological distributions of these obsidian types are assessed through GIS spatial analysis. Results show a great asymmetry in the distribution of these sources toward the two Andean slopes: the Laguna de Diamante chemical type shows a fairly local use pattern, being concentrated almost entirely in Cordillera sites, but the Paramillos shows a less homogeneous distribution and tends to be more concentrated in the sites that are in the western natural corridor. Although these lands were accessed and occupied from diverse demographic nodes in lower-altitude settings, the spatial analysis of obsidian artifacts reinforces the argument of dominant geographic vectors of access connecting with the western valleys and lowlands of Chile.

Keywords

Andean highlands Diamante caldera Obsidian geochemistry GIS analysis Human patterns 

Notes

Acknowledgments

The projects PICT 2014-0940 (Agencia Nacional de Promoción Científica y Tecnológica) and PIP 0301 (CONICET) from Argentina fund this research. The Archaeometry Laboratory at MURR is supported in part by a grant from the United States National Science Foundation (1621158).

Supplementary material

12520_2019_1009_MOESM1_ESM.xlsx (55 kb)
ESM 1 (XLSX 54 kb)
12520_2019_1009_MOESM2_ESM.xlsx (90 kb)
ESM 2 (XLSX 89 kb)
12520_2019_1009_MOESM3_ESM.xlsx (30 kb)
ESM 3 (XLSX 30 kb)

References

  1. Aldenderfer M (1998) Montane foragers: Asana and the south-central Andean Archaic. University of Iowa Press, Iowa CityCrossRefGoogle Scholar
  2. Barberena R, Fernández MV, Rughini AA, Borrazzo K, Garvey R, Lucero G, Della Negra C, Romero G, Durán V, Cortegoso V, Giesso M, Klesner C, MacDonald BL, Glascock MD (2019) Deconstructing a complex obsidian ‘source-scape’: a geoarchaeological and geochemical approach in northwestern Patagonia. Geoarchaeology 34:30–41CrossRefGoogle Scholar
  3. Binford LR (2001) Constructing frames of reference. In: An analytical method for archaeological theory building using ethnographic and environmental data sets. University of California Press, CaliforniaGoogle Scholar
  4. Börgel R (1983) Geomorfología. Colección Geografía de Chile. Instituto Geográfico Militar, SantiagoGoogle Scholar
  5. Burger RL, Mohr Chavez KL, Chavez SJ (2000) Through the glass darkly: prehispanic obsidian procurement and exchange in southern Peru and northern Bolivia. J World Prehist 14(3):267–362CrossRefGoogle Scholar
  6. Campbell R, Stern CR, Peñaloza A (2017) Obsidian in archaeological sites on Mocha Island, southern Chile: implications of its provenience. J Archaeol Sci Rep 13:617–624Google Scholar
  7. Capriles JM, Albarracin-Jordan J, Lombardo U, Osorio D, Maley B, Goldstein ST, Herrera KA, Glascock MD, Domic AI, Veit H, Santoro CM (2016) High-altitude adaptation and late Pleistocene foraging in the Bolivian Andes. J Archaeol Sci Rep 6:463–474Google Scholar
  8. Clapperton C (1993) Quaternary geology and geomorphology of South America. Elsevier, AmsterdamGoogle Scholar
  9. Cobean RH (2002) Un Mundo de Obsidiana: Minería y comercio de un vidrio volcánico en el México antiguo (A World of Obsidian: The Mining and Trade of a Volcanic. Glass in Ancient Mexico). University of Pittsburgh, PittsburghGoogle Scholar
  10. Cornejo L (2010) Arqueología de cazadores recolectores en Chile Central: Una síntesis de lo avanzado, las limitaciones y las aspiraciones. Werken 13:69–84Google Scholar
  11. Cornejo L (2014) Sobre la cronología de la imposición cuzqueña en Chile. Estud Atacameños 47:101–116CrossRefGoogle Scholar
  12. Cornejo L (2017) Cazadores Recolectores tardíos en Chile Central: una historia de continuidad y cambio. Unpublished PhD thesis. Universidad Nacional de Cuyo, ArgentinaGoogle Scholar
  13. Cornejo L, Sanhueza L (2011) Caminos que cruzan la cordillera: El rol del paso del Maipo en la ocupación de la cordillera en Chile Central. Rev Chil Antropología 23:101–122Google Scholar
  14. Cortegoso V (2005) Mid-Holocene hunters in Cordillera: environment, resources and technological strategies. Quat Int 132:71–80CrossRefGoogle Scholar
  15. Cortegoso V, Glascock MD, De Francesco AM, Durán V, Neme G, Gil A, Giesso M, Sanhueza L, Cornejo L, Barberena R, Bocci M (2014) Chemical characterization of obsidian in Central Western Argentina and Central Chile: archaeological problems and perspectives. In: Kligmann D, Morales M (eds) Physical, chemical and biological markers in argentine archaeology: theory, methods and applications. British archaeological reports, vol 2678. Archaeopress, Oxford, pp 17–26Google Scholar
  16. Cortegoso V, Barberena R, Durán V, Lucero G (2016) Geographic vectors of human mobility in the Andes (34-36°S): comparative analysis of ‘minor’ obsidian sources. Quat Int 422:81–92CrossRefGoogle Scholar
  17. Cortegoso V, Yebra L, Castro S, Durán V (2019) La presencia de obsidiana en contextos arqueológicos del Norte de Mendoza: interacciones humanas en una región andina sin fuentes volcánicas. Intersecciones en Antropología. In pressGoogle Scholar
  18. De Francesco A, Durán V, Bloise A, Neme G (2006) Caracterización y procedencia de obsidianas de sitios arqueológicos del área natural protegida Laguna del Diamante (Mendoza Argentina) con metodología no destructiva por fluorescencia de rayos (XRF). An Arqueología Etnología 61:53–67Google Scholar
  19. De Francesco A, Barca D, Bocci M, Cortegoso V, Barberena R, Yebra L, Durán V (2018) Provenance of obsidian artifacts from the Natural Protected Area Laguna del Diamante (Mendoza, Province Argentina) and upper Maipo valley (Chile) by LA-ICP-MS method. Quat Int 466:134–140CrossRefGoogle Scholar
  20. Dixon JE, Cann JR, Renfrew C (1968) Obsidian and the origins of trade. Sci Am 218(3):38–46CrossRefGoogle Scholar
  21. Durán V, Giesso M, Glascock MD, Neme G, Gil A, Sanhueza L (2004) Estudio de fuentes de aprovisionamiento y redes de distribución de obsidiana durante el Holoceno Tardío en el sur de Mendoza (Argentina). Estud Atacameños 28:25–43Google Scholar
  22. Durán V, Neme G, Gil A, Cortegoso V (2006) Arqueología del Área Natural Protegida Laguna del Diamante (Mendoza, Argentina). An Arqueología Etnología 61:81–134Google Scholar
  23. Durán V, Cortegoso V, Barberena R, Frigolé C, Novellino P, Lucero G, Yebra L, Gasco A, Winocur D, Benítez A, Knduson K (2018) ‘To and fro’ the southern Andean highlands (Argentina and Chile): Archaeometric insights on geographic vectors of mobility. J Archaeol Sci Rep 18:668–678Google Scholar
  24. Eerkens JW, Spurling AM, Gras MA (2008) Measuring prehistoric mobility strategies based on obsidian geochemical and technological signatures in the Owens Valley, California. J Archaeol Sci 35:668–680CrossRefGoogle Scholar
  25. Frigolé C, Gasco A (2016) Potters and herders at the southern edge of the Andean world: risk management and mobility in Northwestern Mendoza, Argentina. Quat Int 422:152–162CrossRefGoogle Scholar
  26. Gambier M (1988) La fase cultural Punta del Barro. Instituto de Investigaciones Arqueológicas y Museo, San JuanGoogle Scholar
  27. García A (2003) La ocupación temprana de los andes centrales argentinos (ca. 11.000–8.000 años C14 AP). Relac Soc Argent Antropología 28:153–165Google Scholar
  28. Gasco A (2013) Caza y Pastoreo de Camélidos en la Frontera Meridional del “Mundo” Andino. In: Una Aproximación Osteométrica. Unpublished PhD thesis. Universidad Nacional de Córdoba, CórdobaGoogle Scholar
  29. Giesso M, Durán V, Neme G, Glascock MD, Cortegoso V, Gil A, Sanhueza L (2011) A study of obsidian source usage in the central Andes of Argentina and Chile. Archaeometry 53:1–21CrossRefGoogle Scholar
  30. Gil A, Tykot R, Neme G, Shelnut N (2006) Maize on the frontier. Isotopic and macrobotanical data from Central-Western Argentina. In: Staller J, Tykot R, Benz B (eds) Histories of maize. Academic Press, London, pp 199–214Google Scholar
  31. Gil A, Giardina MA, Neme G, Ugan A (2015) Demografía humana e incorporación de cultígenos en el centro occidente argentino: explorando tendencias en las fechas radiocarbónicas. Rev Esp Antropología Am 44:523–553Google Scholar
  32. Glascock MD, Ferguson JR (2012) Report on the analysis of obsidian source samples by multiple analytical methods. Archaeometry Laboratory, University of Missouri-Columbia.Google Scholar
  33. Glascock MD, Braswell GE, Cobean RH (1998) A systematic approach to obsidian source characterization. In: Shackley MS (ed) Archaeological obsidian studies: method and theory, Advances in Archaeological and Museum Science, vol 3. Plenum Press, New York, pp 15–65CrossRefGoogle Scholar
  34. Harrington R (1989) The Diamante Caldera and Maipo Caldera Complex in the Southern Andes of Argentina and Chile (24° 10′ south). Rev Asoc Geol Argent 44(1–4):186–193Google Scholar
  35. Herzog I, Yepez A (2010) Least-cost kernel density estimation and interpolation-based density analysis applied to survey data. In: Melero J, Revelles J (eds) Fusion of cultures. Abstracts of the XXXVIII Conference on Computer Applications and Quantitative Methods in Archaeology, GranadaGoogle Scholar
  36. Hughes R (1998) On reliability, validity, and scale in obsidian sourcing research. In: Ramenofsky AF, Steffen A (eds) Unit issues in archaeology: measuring time, space, and material. University of Utah Press, Salt Lake City, pp 103–114Google Scholar
  37. Hughes RE (2010) Determining the geologic provenance of tiny obsidian flakes in archaeology using nondestructive EDXRF. Am Lab 42(7):27–31Google Scholar
  38. Kelly RL (2011) Obsidian in the Carson Desert: mobility or trade? In: Hughes RE (ed) Perspectives on prehistoric trade and exchange in California and the Great Basin. University of Utah Press, Salt Lake City, pp 189–200Google Scholar
  39. Kuhn SL (2004) Upper Paleolithic raw material economies at Üçağızlı Cave, Turkey. J Anthropol Archaeol 23(4):431–448CrossRefGoogle Scholar
  40. Lagiglia H (2001) Los orígenes de la agricultura en la Argentina. In: Berberián E, Nielsen A (eds) Historia Argentina Prehispánica. Brujas, Córdoba, pp 41–81Google Scholar
  41. Lara L, Wall R, Stockli D (2008) La Ignimbrita Pudahuel (Asociación Piroclástica Pumícea) y la caldera Diamante (35°S): Nuevas edades U-Th-He. 17° Congreso Geológico Argentino. Actas CD: 1365, San Salvador de Jujuy.Google Scholar
  42. Llano C (2015) On optimal use of a patchy environment: archaeobotany in the Argentinean Andes (Argentina). J Archaeol Sci 54:182–192CrossRefGoogle Scholar
  43. Llano C, Corteogoso V, Marsh E (2017) Producción hortícola a baja escala en el límite continental del desarrollo andino: un aporte desde la arqueobotánica. Darwiniana 5(2):109–125CrossRefGoogle Scholar
  44. Marsh EJ (2017) La fecha de la cerámica más temprana en los Andes sur. Una perspectiva macrorregional mediante modelos bayesianos. Rev Museo Antropología 10:83–94CrossRefGoogle Scholar
  45. Méndez C, Gil A, Neme G, Nuevo Delaunay A, Cortegoso V, Huidobro C, Durán V, Maldonado A (2015) Mid Holocene radiocarbon ages in the Subtropical Andes (∼29°–35° S), climatic change and implications for human space organization. Quat Int 356:15–26CrossRefGoogle Scholar
  46. Miotti L, Terranova E, Barberena R, Hermo D, Giesso M, Glascock MD (2012) Geochemical sourcing of obsidian fishtail projectile points: studies for the Somuncurá Plateau (Río Negro, Argentina). In: Miotti L, Salemme M, Flegenheimer N, Goebel T (eds) Southbound: Late Pleistocene peopling of Latin America. Current Research in the Pleistocene Special Edition, pp 127–131Google Scholar
  47. Morgan C, Neme G, Sugrañes N, Salgán L, Gil A, Otaola C, Giardina M, Llano C (2017) Late prehistoric high-altitude hunter-gatherer residential occupations in the Argentine Southern Andes. J Field Archaeol 42:1–14CrossRefGoogle Scholar
  48. Nami H, Durán V, Cortegoso V, Giesso M (2015) Análisis morfológico-experimental y por fluorescencia de Rayos X de las puntas de proyectil de obsidiana de un ajuar del Periodo Agropecuario Tardío del NO de Mendoza, Argentina. Bol Soc Chil Arqueología 45:7–37Google Scholar
  49. Neme G, Sugrañes N, Salgán L, Gil A, Otaola C, Giardina M, Morgan C, Llano C (2016) Risco de los indios: Ocupaciones humanas de altura en la cuenca del río Diamante. Relac Soc Argent Antropología 41:101–130Google Scholar
  50. Núñez L, Varela J, Casamiquela R, Schiappacasse V, Niemeyer H, Villagrán C (1994) Cuenca de Taguatagua en Chile: El ambiente del Pleistoceno Superior y ocupaciones humanas. Rev Chil Hist Nat 67:503–519Google Scholar
  51. Peralta P, Salas C (2004) Funcionalidad de asentamientos cordilleranos durante el Arcaico Tardío y el Agroalfarero Temprano (Chile Central). Chungará 36(2):923–933Google Scholar
  52. Planella MT, Scherson R, McRostie V (2011) Sitio El Plomo y nuevos registros de cultígenos iniciales en cazadores del Arcaico IV en alto Maipo, Chile Central. Chungará 43:189–202CrossRefGoogle Scholar
  53. Puig S, Rosi MI, Videla F, Mendez E (2011) Summer and winter diet of the guanaco and food availability for a High Andean migratory population (Mendoza, Argentina). Mamm Biol Zeitschrift Säugetierkunde 76(6):727–734CrossRefGoogle Scholar
  54. Rademaker K, Hodgins G, Moore K, Zarrillo S, Miller C, Bromley GR, Leach P, Reid DA, Álvarez WY, Sandweiss DH (2014) Paleoindian settlement of the high-altitude Peruvian Andes. Science 346:466–469CrossRefGoogle Scholar
  55. Salgán L, Garvey R, Neme G, Gil A, Giesso M, Glascock MD, Durán V (2015) Las Cargas: Characterization and prehistoric use of a southern Andean obsidian source. Geoarchaeology 30:139–150CrossRefGoogle Scholar
  56. Sanhueza L, Falabella F (2009) Descomponiendo el Complejo Llolleo: hacia una propuesta de sus niveles mínimos de integración. Chungara 41:229–239Google Scholar
  57. Seelenfreund A, Rees C, Bird R, Bailey G, Bárcena R, Durán V (1996) Trace element analysis of obsidian sources and artifacts of central Chile (Maule River basin) and western Argentina (Colorado river). Lat Am Antiq 7(1):7–20CrossRefGoogle Scholar
  58. Shackley MS (2002) Precision versus accuracy in the XRF analysis of archaeological obsidian: some lessons for archaeometry and archaeology. In: Archaeometry 98: Proceedings of the 31st International Symposium on Archaeometry, Budapest, pp 805–809 BAR International Series 1043Google Scholar
  59. Shackley MS (2009) The topaz basin archaeological obsidian source in the transition zone of Central Arizona. Geoarchaeology 24(3):336–347CrossRefGoogle Scholar
  60. Sruoga P, Llambías EJ, Fauqué L, Schonwandt D, Repol D (2005) Volcanological and geochemical evolution of the Diamante Caldera-Maipo Volcano complex in the southern Andes of Argentina (34°10’S). J S Am Earth Sci 19:399–414CrossRefGoogle Scholar
  61. Sruoga P, Etcheverría M, Feineman M, Rosas M, Bukert C, Ibañes O (2012) Complejo Caldera Diamante-volcán Maipo (34°10’S, 69°50’O): Evolución volcanológica y geoquímica e implicancias en su peligrosidad. Rev Asoc Geol Argent 69(4):508–530Google Scholar
  62. Stanish C (2003) Ancient Titicaca. In: The evolution of complex society in Southern Peru and Northern Bolivia. University of California Press, Los AngelesCrossRefGoogle Scholar
  63. Stern CR (2004) Active Andean volcanism: its geologic and seismic setting. Rev Geol Chile 31:161–206CrossRefGoogle Scholar
  64. Stern C, Amini H, Charrier R, Godoy E, Herve F, Varela J (1984) Petrochemistry and age of rhyolitic pyroclastic flows which occur along the drainage valleys of the rio Maipo and rio Cachapoal (Chile) and the río Yaucha and rio Papagayos (Argentina). Rev Geol Chile 23:39–52Google Scholar
  65. Stern CR, Pereda I, Aguerre A (2012) Primary and secondary sources of a visually variable but chemically distinct obsidian from west-central Neuquén. Archeometry 54:442–453CrossRefGoogle Scholar
  66. Stewart BA, Parker AG, Dewar G, Morley MW, Allott LF (2016) Follow the senqu: Maloti-Drakensberg paleoenvironments and implications for early human dispersals into mountain systems. In: Jones SC, Stewart BA (eds) Africa from MIS 6-2: population dynamics and paleoenvironments. Springer, Dordrecht, pp 247–271CrossRefGoogle Scholar
  67. Tripcevich N, Contreras DA (2013) Archaeological approaches to obsidian quarries: investigations at the Quispisisa source. In: Tripcevich N, Vaughn KJ (eds) Mining and quarrying in the Ancient Andes. Interdisciplinary Contributions to Archaeology. Springer, New York, pp 23–44CrossRefGoogle Scholar
  68. Wheatley D, Gillings M (2002) Spatial technology and archaeology. In: The archaeological applications of GIS. Taylor & Francis, LondonCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Valeria Cortegoso
    • 1
    Email author
  • Lucía Yebra
    • 1
  • Víctor Durán
    • 1
  • Ramiro Barberena
    • 1
  • Gustavo Lucero
    • 2
  • Luis Cornejo
    • 3
  • Martin Giesso
    • 4
  • Brandi L. MacDonald
    • 5
  • Michael D. Glascock
    • 5
  1. 1.Laboratorio de Paleocología Humana, Facultad de Ciencias Exactas y NaturalesInstituto Interdisciplinario de Ciencias Básicas (ICB), CONICET, Universidad Nacional de CuyoMendoza CityArgentina
  2. 2.Laboratorio de Paleocología Humana, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de CuyoMendozaArgentina
  3. 3.Universidad de ChileRegión MetropolitanaChile
  4. 4.Department of AnthropologyNortheastern Illinois UniversityChicagoUSA
  5. 5.Archaeometry LaboratoryUniversity of Missouri Research Reactor CenterColumbiaUSA

Personalised recommendations