Advertisement

Inferring childhood dietary maturation using buccal and occlusal deciduous molar microwear: a case study from the recent prehistory of the Iberian Peninsula

  • Raquel HernandoEmail author
  • John C. Willman
  • Josep Maria Vergès
  • Manuel Vaquero
  • Susana Alonso
  • Xavier Oms
  • Artur Cebrià
  • Juan Ignacio Morales
  • Marina Lozano
Original Paper

Abstract

Over the last years, the knowledge of the children’s diet is a topic of growing interest in dental anthropology. Our aim seeks to establish patterns of interpopulation and intrapopulation variability in dietary microwear among children from four Iberian sites dated to the Neolithic through Bronze Age. Buccal and occlusal surfaces are compared to assess whether their differential rates of microwear turnover correspond with dietary differences linked to social and biological maturation (e.g., weaning and shifts to adult-like diets). This study is based on the analysis of 46 deciduous molars (Udm1, Udm2, and Ldm2). Occlusal and buccal surfaces were observed using an environmental scanning electron microscope (ESEM) following standard microwear methodologies. The results show that from an interpopulation perspective, there are differences in the number of buccal scratches between Valdavara and the other sites. From an intrapopulation perspective, there was a greater number of buccal striations in the older age category from Cova de la Guineu and more occlusal pitting in the older age category from Cova dels Galls Carboners. This study shows the utility of the combined approach to buccal and occlusal microwear analysis as a means of understanding child dietary maturation in prehistory, showing that feeding practices and/or food choice can explain differences between specific age categories of children in addition to differences between archeological sites.

Keywords

Diet Teeth Childhood Weaning Dental microwear 

Notes

Acknowledgments

Special thanks to the three anonymous reviewers and associate editor for comments and suggestions that considerably improved this manuscript. We would like to thank Andrés Teira Brión for his useful comments on the Galician Bronze Age and also to José Ramón Rabuñal for his helpful suggestions. Thanks also to the El Mirador Cave, Cova de la Guineu, Galls Carboners, and Valdavara excavation teams. ESEM analyses were conducted at the Scientific and Technical Resources Service of the University Rovira i Virgili, Tarragona, Spain.

Funding information

This work has been funded by the Dirección General de Investigación of M.E.C, project numbers PGC2018-093925-B-C32, CGL2015-65387-C03-1-P (MINECO/FEDER), the Junta de Castilla y León and CERCA Programme/Generalitat de Catalunya, AGAUR 2017 SGR 1040 and AGAUR 2017- SGR 00011. MINECO 2017-HAR 86509. The Galls Carboners and Cova de la Guineu excavations are funded by the 2014/100574 and the CLT009/18/00024 projects of the Culture Department of the Generalitat de Catalunya. The Valdavara excavation was funded by the Concello de Becerreá. JCW was funded by a Marie Skłodowska-Curie Actions (H2020-MSCA-IF-2016 No. 749188) and JIM by Juan de la Cierva – Incorporación (IJCI-2017-31445) R.H is beneficiary of PhD research fellowship Martí i Franquès (2019PMF-PIPF-59).

Supplementary material

12520_2019_997_MOESM1_ESM.docx (133 kb)
ESM 1 (DOCX 133 kb)

References

  1. AlQahtani S, Hector M, Liversidge H (2010) Brief communication: the London atlas of human tooth development and eruption. Am J Phys Anthropol 142:481–490.  https://doi.org/10.1002/ajpa.21258 CrossRefGoogle Scholar
  2. Armelagos GJ, Goodman AH, Jacobs KH (1991) The origins of agriculture: population growth during a period of declining health. Popul Environ 13:9–22CrossRefGoogle Scholar
  3. Bocquet-Appel J (2002) Paleoanthropological traces of a Neolithic demographic transition. Curr Anthropol 43:637–650.  https://doi.org/10.1086/342429 CrossRefGoogle Scholar
  4. Buikstra JE, Konigsberg LW, Bullington J (1986) Fertility and the development of agriculture in the prehistoric Midwest. Am Antiq 51:528–546CrossRefGoogle Scholar
  5. Cabanes D, Burjachs F, Expósito I et al (2009) Formation processes through archaeobotanical remains: the case of the bronze age levels in El Mirador cave, Sierra de Atapuerca, Spain. Quat Int 193:160–173.  https://doi.org/10.1016/j.quaint.2007.08.002 CrossRefGoogle Scholar
  6. Daura J, Sanz Borràs M, Arias O et al (2015) La Cova de l’Avi (Vallirana, Barcelona) y el inicio del Neolítico final en el Nordeste de la Península Ibérica. Inhumaciones colectivas y nuevas redes de intercambio. Trab Prehist 72:327–341CrossRefGoogle Scholar
  7. Daura J, Sanz M, Soriano I et al (2017) Objetos de oro y epicampaniforme en la Cova del Gegant. Relaciones en la costa mediterránea de la Península Ibérica durante la Edad del Bronce. Trab Prehist 74:149–167CrossRefGoogle Scholar
  8. De Menezes Oliveira MAH, Torres CP, Gomes-Silva JM et al (2010) Microstructure and mineral composition of dental enamel of permanent and deciduous teeth. Microsc Res Tech 73:572–577Google Scholar
  9. Dhavale N, Halcrow SE, Buckley HR et al (2017) Linear and appositional growth in infants and children from the prehistoric settlement of Ban Non Wat, Northeast Thailand: evaluating biological responses to agricultural intensification in Southeast Asia. J Archaeol Sci Rep 11:435–446Google Scholar
  10. Eerkens JW, Bartelink EJ, Bartel J, Johnson PR (2019) Isotopic insights into dietary life history, social status, and food sharing in American Samoa. Am Antiq 84(2):336–352.CrossRefGoogle Scholar
  11. El-Zaatari S (2010) Occlusal microwear texture analysis and the diets of historical/prehistoric hunter-gatherers. Int J Osteoarchaeol 20:67–87.  https://doi.org/10.1002/oa.1027 CrossRefGoogle Scholar
  12. Estalrrich A, El Zaatari S, Rosas A (2017) Dietary reconstruction of the El Sidrón Neandertal familial group (Spain) in the context of other Neandertal and modern hunter-gatherer groups. A molar microwear texture analysis. J Hum Evol 104:13–22.  https://doi.org/10.1016/j.jhevol.2016.12.003 CrossRefGoogle Scholar
  13. Estebaranz F, Martínez LM, Galbany J, Turbón D, Pérez-Pérez A (2009) Testing hypotheses of dietary reconstruction from buccal dental microwear in Australopithecus afarensis. J Hum Evol 57(6):739–750CrossRefGoogle Scholar
  14. Ferembach D, Schwindezky I, Stoukal M (1980) Recommendation for age and sex diagnoses of skeletons. J Hum Evol 9:517–549CrossRefGoogle Scholar
  15. Fernández-Crespo T, Czermak A, Lee-Thorp JA, Schulting RJ (2018) Infant and childhood diet at the passage tomb of Alto de la Huesera (north-central Iberia) from bone collagen and sequential dentine isotope composition. Int J Osteoarchaeol 28:542–551CrossRefGoogle Scholar
  16. Fontanals-Coll M, Eulàlia Subirà M, Díaz-Zorita Bonilla M, Gibaja JF (2017) First insight into the Neolithic subsistence economy in the north-east Iberian Peninsula: paleodietary reconstruction through stable isotopes. Am J Phys Anthropol 162:36–50CrossRefGoogle Scholar
  17. Fox J (2005) Getting started with the R commander: a basic-statistics graphical user interface to R. J Stat Softw 14:1–42Google Scholar
  18. Fulminante F (2015) Infant feeding practices in Europe and the Mediterranean from prehistory to the middle ages: a comparison between the historical sources and bioarchaeology AU - Fulminante, Francesca. Child Past 8:24–47.  https://doi.org/10.1179/1758571615Z.00000000026 CrossRefGoogle Scholar
  19. Galbany J, Martínez Martínez L, Pérez-Pérez A (2004) Tooth replication techniques, SEM imaging and microwear analysis in primates: methodological obstacles. Anthropologie 42(1):5Google Scholar
  20. Galbany J, Pérez-Pérez A (2004) Buccal enamel microwear variability in Cercopithecoidea primates as a reflection of dietary habits in forested and open savanna environments. Anthropologie 42(1):13–20Google Scholar
  21. Galbany J, Martínez LM, López-Amor HM, Espurz V, Hiraldo O, Romero A, de Juan J, Pérez-Pérez A (2005) Error rates in buccal-dental microwear quantification using scanning electron microscopy. Scanning 27(1):23–29CrossRefGoogle Scholar
  22. Galbany J, Garriga N, Majoral-Salichs M et al (2008) Microdesgaste y patología dental en la población de la Edad de Bronce de “Mar i Muntanya” (Alella, Barcelona). Rev Esp Antrop Fís 28:25–36Google Scholar
  23. García-González R, Carretero JM, Richards MP et al (2015) Dietary inferences through dental microwear and isotope analyses of the Lower Magdalenian individual from El Mirón Cave (Cantabria, Spain). J Archaeol Sci 60:28–38.  https://doi.org/10.1016/j.jas.2015.03.020 CrossRefGoogle Scholar
  24. García-González R, Sánchez-Puente Z, Arsuaga JL, Carretero JM (2019) Dietary inferences from dental microwear patterns in Chalcolithic populations from the Iberian Peninsula: the case of El Portalón de Cueva Mayor (Sierra de Atapuerca, Burgos, Spain) and El Alto de la Huesera (Álava, Spain). Archaeol Anthropol Sci 11(8):3811–3823.  https://doi.org/10.1007/s12520-018-0711-x CrossRefGoogle Scholar
  25. Gibaja JF, Majó T, Chambon P, et al (2010) Prácticas funerarias durante el Neolítico. Los enterramientos infantiles en el noreste de la Península IbéricaGoogle Scholar
  26. Gordon KD (1988) A review of methodology and quantification in dental microwear analysis. Scanning Microsc 2:1139–1147Google Scholar
  27. Gordon KD (1982) A study of microwear on chimpanzee molars: implications for dental microwear analysis. Am J Phys Anthropol 59:195–215CrossRefGoogle Scholar
  28. Grine FE (1986) Dental evidence for dietary differences in Australopithecus and Paranthropus: a quantitative analysis of permanent molar microwear. J Hum Evol.  https://doi.org/10.1016/S0047-2484(86)80010-0 CrossRefGoogle Scholar
  29. Gügel IL, Grupe G, Kunzelmann K-H (2001) Simulation of dental microwear: characteristic traces by opal phytoliths give clues to ancient human dietary behavior. Am J Phys Anthr 114:124–138.  https://doi.org/10.1002/1096-8644(200102)114:2<124::AID-AJPA1012>3.0.CO;2-S CrossRefGoogle Scholar
  30. Halcrow SE, Tayles N (2008) The bioarchaeological investigation of childhood and social age: problems and prospects. J Archaeol Method Theory 15:190–215.  https://doi.org/10.1007/s10816-008-9052-x CrossRefGoogle Scholar
  31. Han CS, Martin MA, Dichosa AEK et al (2016) Salivary microbiomes of indigenous Tsimane mothers and infants are distinct despite frequent premastication. PeerJ 4:e2660CrossRefGoogle Scholar
  32. Howcroft R (2013) Weaned upon a time : studies of the infant diet in prehistory. Doctoral dissertation, Department of Archaeology and Classical Studies, Stockholm University.Google Scholar
  33. Jarosová I (2008) Dietary inferences using buccal microwear analysis on the LBK population from Vedrovice, Czech Republic. Anthropologie 46:175Google Scholar
  34. Kay RF, Hiiemae KM (1974) Jaw movement and tooth use in recent and fossil primates. Am J Phys Anthropol 40:227–256.  https://doi.org/10.1002/ajpa.1330400210 CrossRefGoogle Scholar
  35. Kelly CD, Schmidt CW, D´Anastasio R (2020) Dental microwear texture analysis in deciduous teeth. In: Dental Wear in Evolutionary and Biocultural Contexts (pp. 169-186). Academic Press. Google Scholar
  36. King C, Snoddy AM, Millard AR et al (2018) A multifaceted approach towards interpreting early life experience and infant feeding practices in the ancient Atacama Desert, Northern Chile. Int J Osteoarchaeol 28(5):599–612.  https://doi.org/10.1002/oa.2671 CrossRefGoogle Scholar
  37. King T, Aiello LC, Andrews P (1999) Dental microwear of Griphopithecus alpani. Acad Press J Hum Evol 36:3–31.  https://doi.org/10.1006/jhev.1998.0258 CrossRefGoogle Scholar
  38. Knudson K, Stojanowski C (2008) New directions in bioarchaeology: recent contributions to the study of human social identities. J Archaeol Res 16(4):397–432.  https://doi.org/10.1007/s10814-008-9024-4 CrossRefGoogle Scholar
  39. Krueger KL (2016) Dental microwear texture differences between permanent and deciduous enamel. In: the 85th annual meeting of American Association of Physical AnthropologistsGoogle Scholar
  40. Lalueza-Fox C, Pérez-Pérez (1993) The diet of the Neanderthal Child Gibraltar 2 (Devil’s Tower) through the study of the vestibular striation pattern. J Hum Evol 24(1):29–41CrossRefGoogle Scholar
  41. Lalueza C, Péréz-Perez A, Turbón D (1996) Dietary inferences through buccal microwear analysis of Middle and Upper Pleistocene human fossils. Am J Phys Anthropol 100:367–387.  https://doi.org/10.1002/(SICI)1096-8644(199607)100:3<367::AID-AJPA5>3.0.CO;2-R CrossRefGoogle Scholar
  42. Mahoney P (2006) Dental microwear from Natufian hunter-gatherers and early neolithic farmers: comparisons within and between samples. Am J Phys Anthropol.  https://doi.org/10.1002/ajpa.20311 CrossRefGoogle Scholar
  43. Mahoney P (2007) Human dental microwear from Ohalo II (22,500-23,500 cal BP), southern Levant. Am J Phys Anthropol.  https://doi.org/10.1002/ajpa.20548 CrossRefGoogle Scholar
  44. Mahoney P, Schmidt C, Deter C et al (2016) Deciduous enamel 3D microwear texture analysis as an indicator of childhood diet in medieval Canterbury, England. J Archaeol Sci 66:128–136.  https://doi.org/10.1016/j.jas.2016.01.007 CrossRefGoogle Scholar
  45. Maier W, Schneck G (1982) Functional morphology of hominoid dentitions. J Hum Evol 11:693–696.  https://doi.org/10.1016/S0047-2484(82)80057-2 CrossRefGoogle Scholar
  46. Mays S (2016) A study of the potential of deciduous incisor wear as an indicator of weaning using a human skeletal population. Int J Osteoarchaeol 26:725–731.  https://doi.org/10.1002/oa.2464 CrossRefGoogle Scholar
  47. Mays S, Gowland R, Halcrow S, Murphy E (2017) Child bioarchaeology: perspectives on the past 10 years. Child Past:1–19.  https://doi.org/10.1080/17585716.2017.1301066 CrossRefGoogle Scholar
  48. Meehan CL, Roulette JW (2013) Early supplementary feeding among central African foragers and farmers: a biocultural approach. Soc Sci Med 96:112–120.  https://doi.org/10.1016/j.socscimed.2013.07.029 CrossRefGoogle Scholar
  49. Molleson T, Jones K, Jones S (1993) Dietary change and the effects of food preparation on microwear patterns in the Late Neolithic of Abu Hureyra, northern Syria. J Hum Evol 24:455–468CrossRefGoogle Scholar
  50. Morales JI, Cebrià A, Mestres J, et al (2013) La Cova de la Guineu. 12.000 anys de presència humana a les capçaleres del Foix. III Monogr del Foix 172–183Google Scholar
  51. Oms FX, Cebrià A, Mestres J, et al (2016) Campaniforme i metal· lúrgia en un espai sepulcral del III mil· lenni cal. BC: la Cova de la Guineu (Font-rubí, Alt Penedès). Jornades d’Arqueologia del Penedès 109–116Google Scholar
  52. Pearson JA, Hedges REM, Molleson TI, Özbek M (2010) Exploring the relationship between weaning and infant mortality: an isotope case study from Aşıklı Höyük and Çayönü Tepesi. Am J Phys Anthropol 143:448–457CrossRefGoogle Scholar
  53. Pelto GH, Zhang Y, Habicht J (2010) Premastication: the second arm of infant and young child feeding for health and survival? Matern Child Nutr 6:4–18CrossRefGoogle Scholar
  54. Pérez-Pérez A, Espurz V, Bermúdez de Castro JM et al (2003) Non-occlusal dental microwear variability in a sample of Middle and Late Pleistocene human populations from Europe and the Near East. J Hum Evol 44:497–513.  https://doi.org/10.1016/S0047-2484(03)00030-7 CrossRefGoogle Scholar
  55. Pérez-Pérez A, Lalueza C, Turbón D (1994) Intraindividual and intragroup variability of buccal tooth striation pattern. Am J Phys Anthropol 94:175–187.  https://doi.org/10.1002/ajpa.1330940203 CrossRefGoogle Scholar
  56. Pérez-Pérez A, Martínez LM, Gómez M et al (2018) Correlations among dietary proxies in African fossil hominins: dental buccal microwear, occlusal textures and 13C stable isotope. J Archaeol Sci Rep.  https://doi.org/10.1016/j.jasrep.2018.03.013 CrossRefGoogle Scholar
  57. Pinhasi R, Stock JT (2011) Human bioarchaeology of the transition to agriculture. Eds: John Wiley & Sons.Google Scholar
  58. Polo-Cerdá M, Romero A, Casabó J, De Juan J (2007) The bronze age burials from Cova Dels Blaus (Vall d’Uixó, Castelló, Spain): an approach to palaeodietary reconstruction through dental pathology, occlusal wear and buccal microwear patterns. HOMO - J Comp Hum Biol 58:297–307.  https://doi.org/10.1016/j.jchb.2006.10.005 CrossRefGoogle Scholar
  59. Reimer PJ, Bard E, Bayliss A et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  60. Romero A, De Juan J (2007) Intra- and interpopulation human buccal tooth surface microwear analysis: inferences about diet and formation processes. Anthropologie 45:61–70Google Scholar
  61. Romero A, Galbany J, De Juan J, Pérez-Pérez A (2012a) Brief communication: short- and long-term in vivo human buccal-dental microwear turnover. Am J Phys Anthropol 148:467–472.  https://doi.org/10.1002/ajpa.22054 CrossRefGoogle Scholar
  62. Romero A, Galbany J, Juan D, Pe A (2012b) Brief communication : short- and long-term in vivo human buccal – dental microwear turnover 000:0–5.  https://doi.org/10.1002/ajpa.22054 CrossRefGoogle Scholar
  63. Romero A, Martínez-Ruiz N, De Juan J (2004) Non-occlusal dental microwear in a Bronze-Age human sample from East Spain. Anthropologie 42:65–70Google Scholar
  64. Romero A, Ramírez-Rozzi FV, De Juan J, Pérez-Pérez A (2013) Diet-related buccal dental microwear patterns in central African pygmy foragers and bantu-speaking farmer and pastoralist populations. PLoS One.  https://doi.org/10.1371/journal.pone.0084804 CrossRefGoogle Scholar
  65. Ryan AS (1979) Wear striation direction on primate teeth: a scanning electron microscope examination. Am J Phys Anthropol 50:155–167.  https://doi.org/10.1002/ajpa.1330500204 CrossRefGoogle Scholar
  66. Scharlotta I, Goude G, Herrscher E et al (2018) Shifting weaning practices in Early Neolithic Cis-Baikal. Siberia 28:579–598.  https://doi.org/10.1002/oa.2708 CrossRefGoogle Scholar
  67. Schmidt CW (2001) Dental microwear evidence for a dietary shift between two nonmaize-reliant prehistoric human populations from Indiana. Am J Phys Anthropol.  https://doi.org/10.1002/1096-8644(200102)114:2<139::AID-AJPA1013>3.0.CO;2-9
  68. Schmidt CW, Beach JJ, McKinley JI, Eng JT (2015) Distinguishing dietary indicators of pastoralists and agriculturists via dental microwear texture analysis. Surf Topogr Metrol Prop 4:14008CrossRefGoogle Scholar
  69. Schmidt CW, Remy A, Van Sessen R et al (2019) Dental microwear texture analysis of Homo sapiens sapiens: foragers, farmers, and pastoralists. Am J Phys Anthropol:1–20.  https://doi.org/10.1002/ajpa.23815 CrossRefGoogle Scholar
  70. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671CrossRefGoogle Scholar
  71. Schour I, Massler M (1941) The development of the human dentition. J Am Dent Assoc 28:1153–1160Google Scholar
  72. Scott RM, Halcrow SE (2017) Investigating weaning using dental microwear analysis: a review. J Archaeol Sci Rep 11:1–11.  https://doi.org/10.1016/j.jasrep.2016.11.026 CrossRefGoogle Scholar
  73. Sellen DW, Smay DB (2001) Relationship between subsistence and age at weaning in “preindustrial” societies. Hum Nat 12:47–87CrossRefGoogle Scholar
  74. Sołtysiak A (2011) Cereal grinding technology in ancient Mesopotamia: evidence from dental microwear. J Archaeol Sci 38:2805–2810.  https://doi.org/10.1016/j.jas.2011.06.025 CrossRefGoogle Scholar
  75. Tausch J, Kullmer O, Bromage TG (2015) A new method for determining the 3D spatial orientation of molar microwear. Scanning 37(6):446–457CrossRefGoogle Scholar
  76. Teaford MF (1994) Dental microwear and dental function. Evol Anthropol Issues News Rev 3:17–30.  https://doi.org/10.1002/evan.1360030107 CrossRefGoogle Scholar
  77. Teaford MF, Larsen CS, Pastor RF, Noble VE (2001) Pits and scratches: microscopic evidence of tooth use and masticatory behavior in La Florida. Bioarchaeol Span Florida Impact Colon Univ Press Florida, Gainesv 82–112Google Scholar
  78. Teaford MF, Lytle JD (1996) Brief communication: diet-induced changes in rates of human tooth microwear: a case study involving stone-ground maize. Am J Phys Anthropol 100:143–147CrossRefGoogle Scholar
  79. Teaford MF, Ungar PS, Taylor AB et al (2017) In vivo rates of dental microwear formation in laboratory primates fed different food items. Biosurf Biotribol 3:166CrossRefGoogle Scholar
  80. Teaford MF, Tylenda CA (1991) A new approach to the study of tooth wear. J Dent Res 70(3):204–207CrossRefGoogle Scholar
  81. Teira Brión A, Amado E (2014) Molinos fuera de lugar. Fronteras y contextos de la molienda en la arqueología de la Edad del Hierro del noroeste ibérico Rev d’Arqueologia Ponent 24:271–287Google Scholar
  82. Ungar PS (2011) Dental evidence for the diets of Plio-Pleistocene hominins. Am J Phys Anthropol 146:47–62.  https://doi.org/10.1002/ajpa.21610 CrossRefGoogle Scholar
  83. Vaquero M, Alonso Fernández S, Alonso Fernández C et al (2009) New radiometric dates for the prehistory of northwestern Iberia: Valdavara cave (Becerreá, Lugo). Trab Prehist 66:99–113CrossRefGoogle Scholar
  84. Ventresca Miller A, Hanks BK, Judd M, Epimakhov A, Razhev D (2017) Weaning practices among pastoralists: new evidence of infant feeding patterns from Bronze Age Eurasia. Am J Phys Anthropol 162:409–422.  https://doi.org/10.1002/ajpa.23126 CrossRefGoogle Scholar
  85. Vergès JM, Allué E, Fontanals M et al (2016) El Mirador cave (Sierra de Atapuerca, Burgos, Spain): a whole perspective. Quat Int 414:236–243CrossRefGoogle Scholar
  86. Vergès JM, Munoz L, Pedro M et al (2017) La cova dels Galls Carboners (Mont-ral, Alt Camp), una cavitat dínhumació col·lectiva durant l’edat del Bronze. Butlletí Arqueol V 38-39:17–43Google Scholar
  87. Waterman AJ, Silva AM, Tykot RH (2014) Stable isotopic indicators of diet from two late prehistoric burial sites in Portugal: an investigation of dietary evidence of social differentiation. Open J Archaeom 2:1.  https://doi.org/10.4081/arc.2014.5258 CrossRefGoogle Scholar
  88. Waters-Rist AL, Bazaliiskii VI, Weber AW, Katzenberg MA (2011) Infant and child diet in Neolithic hunter-fisher-gatherers from cis-baikal, Siberia: intra-long bone stable nitrogen and carbon isotope ratios. Am J Phys Anthropol 146:225–241CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Raquel Hernando
    • 1
    • 2
    Email author
  • John C. Willman
    • 1
    • 2
  • Josep Maria Vergès
    • 1
    • 2
  • Manuel Vaquero
    • 1
    • 2
  • Susana Alonso
    • 1
    • 2
  • Xavier Oms
    • 3
  • Artur Cebrià
    • 3
  • Juan Ignacio Morales
    • 3
  • Marina Lozano
    • 1
    • 2
  1. 1.IPHES. Institut Català de Paleoecologia Humana i Evolució Social. Zona Educacional 4TarragonaSpain
  2. 2.Àrea de Prehistòria, Universitat Rovira i Virgili (URV)TarragonaSpain
  3. 3.Department Història i Arqueologia, Seminari d’Estudis i Recerques Prehistòriques (SERP). Facultat de Geografia i HistòriaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations