Advertisement

Predictive Middle Palaeolithic climatic conditions from Eastern Iberia: a methodological approach based on charcoal analysis and modelling

  • Paloma Vidal-MatutanoEmail author
  • Salvador Pardo-Gordó
Original Paper

Abstract

Ecological and climate modelling is increasingly common in archaeological science as it is a useful tool to analyse human behaviour and ecological variables that influenced the conformation of landscapes. Predictive vegetation models, mainly based on palynological data, provide meaningful information about the theoretical distribution of plant formations in the past by creating different hypothetical scenarios. However, factors linked to variability in pollen productivity according to taxa and to the regional scale offered by this proxy in palaeoenvironmental reconstructions have led some authors to propose the use of macrobotanical data in order to detect a higher number of ecological nuances on a local scale. In this paper, we present the results of a study aimed at characterising the theoretical distribution of simulated Middle Palaeolithic biogeographic and climatic values in the local area of the Upper Serpis Valley, Eastern Iberia. Our predictive model is based on the anthracological data from two local sites, Abric del Pastor (MIS 4) and El Salt (MIS 3), and the climatic data from a total of 33 current weather stations located in the study area and adjacent distances. The data suggest that the Serpis Valley was a dynamic geographic area where there may have been different biogeographical and climatic conditions, not perceptible only through charcoal analysis. These nuances may represent the presence of several biotopes in the surroundings of these two sites, where plant taxa with different temperature and humidity requirements could have grown.

Keywords

El Salt Abric del Pastor Neanderthals Charcoal analysis Climate Biogeography 

Notes

Acknowledgements

This work was carried out with the financial support of a VALi+d pre-doctoral grant (ACIF/2013/260) to P. Vidal-Matutano. Archaeological research was funded under the Spanish Government projects HAR2012-32703 and HAR2015-68321-P (MICINN-FEDER/EU), Direcció General de Cultura (Conselleria d’Educació, Cultura i Esports, Generalitat Valenciana) and Museu Aqueològic Municipal Camil Visedo Moltó. P. Vidal-Matutano is funded by the Spanish Government’s Ministry of Economy and Competitiveness, under the “Juan de la Cierva – Formación” program (FJCI-2017-32461) and S. Pardo-Gordó is currently granted with an APOSTD Postdoctoral grant (APOST/2019/179, Generalitat Valenciana).

Supplementary material

12520_2019_993_MOESM1_ESM.docx (13.1 mb)
ESM 1 (DOCX 13.0 mb)
12520_2019_993_MOESM2_ESM.xls (28 kb)
ESM 2 (XLS 28 kb)

References

  1. Adams JM, Faure H (1997) Preliminary vegetation maps of the world since the last glacial maximum: an aid to archaeological understanding. J Archaeol Sci 24:623–647.  https://doi.org/10.1006/jasc.1996.0146 CrossRefGoogle Scholar
  2. Agustí B, Alcalde G, Güell A, Juan-Muns N, Rueda JM, Terradas X (1991) La cova 120, parada de caçadors-recol·lectors del Paleolític mitjà. Cypsela IX:7–20Google Scholar
  3. Alcolea M (2017) Mesolithic fuel use and woodland in the Middle Ebro Valley (NE Spain) through wood charcoal analysis. Quat Int 431:39–51CrossRefGoogle Scholar
  4. Allué E (2002) Dinámica de la vegetación y explotación del combustible leñoso durante el Pleistoceno superior y el Holoceno del noreste de la península Ibérica a partir del análisis antracológico. Unpublished Doctoral Dissertation. Universitat Rovira i VirgiliGoogle Scholar
  5. Allué E, Picornell-Gelabert L, Daura J, Sanz M (2017a) Reconstruction of the palaeoenvironment and anthropogenic activity from the Upper Pleistocene / Holocene anthracological records of the NE Iberian Peninsula (Barcelona, Spain). Quat Int 457:172–189CrossRefGoogle Scholar
  6. Allué E, Solé A, Burguet-Coca A (2017b) Fuel exploitation among Neanderthals based on the anthracological record from Abric Romaní (Capellades, NE Spain). Quat Int 431:6–15CrossRefGoogle Scholar
  7. Allué E, Martínez-Moreno J, Roy M, Benito-Calvo A, Mora R (2018) Montane pine forests in NE Iberia during MIS 3 and MIS 2. A study based on new anthracological evidence from Cova Gran (Santa Linya, Iberian Pre-Pyrenees). Rev Palaeobot Palynol 258:62–72CrossRefGoogle Scholar
  8. Anderson DG, Gillam JC (2000) Paleoindian colonization of the Americas: implications from an examination of physiography, demography, and artifact distribution. Am Antiq 65:43–66CrossRefGoogle Scholar
  9. Arsuaga JL, Baquedano E, Pérez-González A, Sala N, Quam RM, Rodríguez L, García R, García N, Álvarez-Lao DJ, Laplana C, Huguet R, Sevilla P, Maldonado E, Blain H-A, Ruiz-Zapata MB, Sala P, Gil-García MJ, Uzquiano P, Pantoja A, Márquez B (2012) Understanding the ancient habitats of the Last-Interglacial (late MIS 5) Neanderthals of Central Iberia: Paleoenvironmental and taphonomic evidence from the Cueva del Camino (Spain) site. Quat Int 275:55–75CrossRefGoogle Scholar
  10. Arun PV (2013) A comparative analysis of different DEM interpolation methods. Egypt J Remote Sens Space Sci 16:133–139Google Scholar
  11. Aura JE, Carrión Y, Estrelles E, Jordà G (2005) Plant economy of hunter-gatherer groups at the end of the last Ice Age: plant macroremains from the Cave of Santa Maira (Alacant, Spain) ca. 12000–9000 B.P. Veg Hist Archaeobotany 14:542–550CrossRefGoogle Scholar
  12. Badal E, Carrión Y (2001) Del Glaciar al Interglaciar: los paisajes vegetales a partir de los restos carbonizados hallados en las cuevas de Alicante. In: Villaverde V (ed) De Neandertales a Cromañones: El inicio del poblamiento en las tierras valencianas. Servei de Publicacions, Universitat de València, pp 21–40Google Scholar
  13. Badal E, Heinz C (1991) Méthodes utilisées en Anthracologie pour l’étude de sites préhistoriques. BAR Int Ser 573:17–47Google Scholar
  14. Badal E, Martínez CM (2018) Different parts of the same plants. Charcoals and seeds from Cova de les Cendres (Alicante, Spain). Quat Int 463:391–400CrossRefGoogle Scholar
  15. Badal E, Villaverde V, Zilhão J (2012) Middle Palaeolithic wood charcoal from three sites in south and west Iberia: biogeographic implications. In: Badal E, Carrión Y, Macías M, Ntinou M (eds) Wood and charcoal. Evidence for human and natural history. Saguntum-Extra 13, pp 13–24Google Scholar
  16. Badal E, Carrión Y, Figueiral I, Oliva Rodríguez-Ariza M (2014) Pinares y enebrales. El paisaje solutrense en Iberia. Espacio, tiempo y forma. Serie I, Prehistoria y arqueología 259–272Google Scholar
  17. Barton CM, Bernabeu J, Aura JE, Garcia O (1999) Land-use dynamics and socioeconomic change: an example from the Polop Alto Valley. Am Antiq:609–634CrossRefGoogle Scholar
  18. Berihuete-Azorín M (2013) First archaeobotanical approach to plant use among Selknam hunter-gatherers (Tierra del Fuego, Argentina). Archaeol Anthropol Sci 5:255–266CrossRefGoogle Scholar
  19. Bernabeu J, Barton CM, Pardo-Gordó SP, Bergin SM (2015) Modeling initial Neolithic dispersal. The first agricultural groups in West Mediterranean. Ecol Model 307:22–31CrossRefGoogle Scholar
  20. Binford LR (1980) Willow smoke and dogs’ tails: hunter-gatherer settlement systems and archaeological site formation. Am Antiq:4–20CrossRefGoogle Scholar
  21. Binney HA, Willis KJ, Edwards ME, Bhagwat SA, Anderson PM, Andreev AA, Blaauw M, Damblon F, Haesaerts P, Kienast F (2009) The distribution of late-Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil database. Quat Sci Rev 28:2445–2464CrossRefGoogle Scholar
  22. Blain HA, Laplana C, Sevilla P, Arsuaga JL, Baquedano E, Pérez-González A (2014) MIS 5/4 transition in a mountain environment: herpetofaunal assemblages from Cueva del Camino, central Spain. Boreas 43(1):107–120CrossRefGoogle Scholar
  23. Brandišauskas D (2011) Hide tanning and its use in Taiga: the case of the Orochen-Evenki reindeer herders and hunters of Zabaikalye (East Siberia). J Ethnol Folkloristics 4:97–114Google Scholar
  24. Bunting M, Farrell M (2017) Seeing the wood for the trees: recent advances in the reconstruction of woodland in archaeological landscapes using pollen data. Environ Archaeol:1–12Google Scholar
  25. Burjachs F, Julià R (1994) Abrupt climatic changes during the last glaciation based on pollen analysis of the Abric Romani, Catalonia, Spain. Quat Res 42:308–315.  https://doi.org/10.1006/qres.1994.1081 CrossRefGoogle Scholar
  26. Burjachs F, López-García JM, Allué E, Blain H-A, Rivals F, Bennàsar M, Expósito I (2012) Palaeoecology of Neanderthals during Dansgaard–Oeschger cycles in northeastern Iberia (Abric Romaní): from regional to global scale. Quat Int 247:26–37CrossRefGoogle Scholar
  27. Burrough PA, McDonnell R (1998) Principles of geographical information systems. Oxford University Press, OxfordGoogle Scholar
  28. Carrión JS (1992) A palaeoecological study in the Western Mediterranean area. The Upper Pleistocene pollen record from Cova Beneito (Alicante, Spain). Palaeogeogr Palaeoclimatol Palaeoecol 92:1–14CrossRefGoogle Scholar
  29. Carrión JS, Munuera M, Navarro C, Burjachs F, Dupré M, Walker MJ (1999) The palaeoecological potencial of pollen records in caves: the case of Mediterranean Spain. Quat Sci Rev 18:1061–1073CrossRefGoogle Scholar
  30. Carrión JS, Yll EI, Walker MJ, Legaz AJ, Chaín C, López A (2003) Glacial refugia of temperate, Mediterranean and Ibero-North African flora in South-Eastern Spain: new evidence from cave pollen at two Neanderthal man sites. Glob Ecol Biogeogr 12:119–129CrossRefGoogle Scholar
  31. Carrión JS, González-Sampériz P, López Sáez JA, López García P, Dupré M (2009) Quaternary pollen analysis in the Iberian Peninsula: the value of negative results. Internet Archaeol 25:1–53Google Scholar
  32. Carrión Y, Guillem P, Eixea A, Martínez-Varea CM, Tormo C, Badal E, Zilhão J, Villaverde V (2018) Climate, environment and human behaviour in the Middle Palaeolithic of Abrigo de la Quebrada (Valencia, Spain): the evidence from charred plant and micromammal remains. Quat Sci Rev 217:152–168CrossRefGoogle Scholar
  33. Chabal L (1988) Pourquoi et comment prélever les charbons de bois pour la période antique: les méthodes utilisées sur le site de Lattes (Hérault). Lattara:187–222Google Scholar
  34. Chabal L (1992) La représentativité paléo-écologique des charbons de bois archéologiques issus du bois de feu. Bulletin de la société botanique de France. Actualités Botaniques 139:213–236CrossRefGoogle Scholar
  35. Chabal L (1997) Forêts et sociétés en Languedoc (Néolithique final, Antiquité tardive) : l’anthracologie, méthode et paléoécologie. Éditions de la Maison des Sciences de l’Homme, ParisGoogle Scholar
  36. Clarkson C, Bellas A (2014) Mapping stone: using GIS spatial modelling to predict lithic source zones. J Archaeol Sci 46:324–333CrossRefGoogle Scholar
  37. Costa M, Morla C, Sainz (eds) (2005) Los bosques ibéricos: Una interpretación geobotánica. Planeta, BarcelonaGoogle Scholar
  38. Dawson A, Paciorek CJ, McLachlan JS, Goring S, Williams JW, Jackson ST (2016) Quantifying pollen-vegetation relationships to reconstruct ancient forests using 19th-century forest composition and pollen data. Quat Sci Rev 137:156–175CrossRefGoogle Scholar
  39. Errico F, Sánchez Goñi MF (2003) Neandertal extinction and the millennial scale climatic variability of OIS 3. Quat Sci Rev 22:769–788.  https://doi.org/10.1016/S0277-3791(03)00009-X CrossRefGoogle Scholar
  40. Estrela MJ, Fumanal MP, Garay P (1993) Evolución geomorfológica de los valles prebéticos nororientales. Cuaternario y Geomorfología 7:157–170Google Scholar
  41. Fagoaga A, Ruiz-Sánchez FJ, Laplana C, Blain H-A, Marquina R, Marin-Monfort MD, Galván B (2017) Palaeoecological implications of Neanderthal occupation at Unit Xb of El Salt (Alcoi, eastern Spain) during MIS 3 using small mammals proxy. Quat Int.  https://doi.org/10.1016/j.quaint.2017.10.024 CrossRefGoogle Scholar
  42. Feurdean A, Wohlfarth B, Björkman L, Tantau I, Bennike O, Willis KJ, Farcas S, Robertsson AM (2007) The influence of refugial population on Lateglacial and early Holocene vegetational changes in Romania. Rev Palaeobot Palynol 145:305–320CrossRefGoogle Scholar
  43. Franklin J, Potts AJ, Fisher EC, Cowling RM, Marean CW (2015) Paleodistribution modeling in archaeology and paleoanthropology. Quat Sci Rev 110:1–14CrossRefGoogle Scholar
  44. Galván B, Hernández CM, Mallol C, Mercier N, Sistiaga A, Soler V (2014) New evidence of early Neanderthal disappearance in the Iberian Peninsula. J Hum Evol 75:16–27CrossRefGoogle Scholar
  45. Gamble C (1991) An introduction to the living spaces of mobile peoples. In: Gamble C (Ed) Ethnoarchaeological Approaches to Mobile Campsites: Hunter-Gatherer and Pastoralist Case Studies. International Monographs in Prehistory, pp 1–24Google Scholar
  46. García Moreno A (2007a) La evolución del paisaje en la transición al Holoceno Desarrollo de un modelo predictivo de vegetación en el Valle del Asón (Cantabria). Trab Prehist 64:55–71CrossRefGoogle Scholar
  47. García Moreno A (2007b) Predictive models and the evolution of tree vegetation during the Final Pleistocene-Holocene transition. A case study from the Asón River Valley (Cantabria, Spain) - CAA Online Proceedings. In: Posluschny A, Lambers K, Herzog I (eds) Layers of perception. Proceedings of the 35th international conference on computer applications and quantitative methods in archaeology (CAA), BerlinGoogle Scholar
  48. García-Moreno A (2015) The incidence of potential insolation on settlement dynamics and site location preferences: a case study from the Cantabrian Late Palaeolithic. J Archaeol Sci Rep 3:90–99Google Scholar
  49. García-Moreno A, Fano-Martínez MÁ (2014) Palaeolithic sites beyond the archaeological deposits. In: García A, García J, Maximiano A, Rios-Garaizar J (eds) Debating Spatial Archaeology. Procedings of the International Workshop on Landscape and Spatial Analysis in Archaeology. Santander, June 8th-9th, 2012. The Cantabria International Institute for Prehistoric Research, Santander, pp 231–241Google Scholar
  50. Garralda MD, Galván B, Hernández CM, Mallol C, Gómez JA, Maureille B (2014) Neanderthals from El Salt (Alcoy, Spain) in the context of the latest Middle Palaeolithic populations from the southeast of the Iberian Peninsula. J Hum Evol 75:1–15CrossRefGoogle Scholar
  51. Giesecke T, Davis B, Brewer S, Finsinger W, Wolters S, Blaauw M, de Beaulieu J-L, Binney H, Fyfe RM, Gaillard M-J (2014) Towards mapping the late Quaternary vegetation change of Europe. Veg Hist Archaeobotany 23:75–86CrossRefGoogle Scholar
  52. Gilligan I (2007) Neanderthal extinction and modern human behaviour: the role of climate change and clothing. World Archaeol 39:499–514CrossRefGoogle Scholar
  53. Gillreath-Brown A, Nagaoka L, Wolverton S (2019) A geospatial method for estimating soil moisture variability in prehistoric agricultural landscapes. PLoS One 14(8):e0220457.  https://doi.org/10.1371/journal.pone.0220457 CrossRefGoogle Scholar
  54. González-Sampériz, P., Leroy, S.A.G., Carrión; J.S., Fernáandez, S., García-Antón, M., Gil-García, M.J., Uzquiano, P., Valero-Garcés, B., Figueiral, I. (2010) Steppes, savannahs, forests and phyotodiversity reservoirs during the Pleistocene in the Iberian Peninsula. Rev Palaeobot Palynol 162: 427–457CrossRefGoogle Scholar
  55. Gualda Gómez CE (1988) La Sierra de Mariola: aspectos geomorfológicos y biogeográficos. Universidad de AlicanteGoogle Scholar
  56. Hardy BL (2010) Climatic variability and plant food distribution in Pleistocene Europe: implications for Neanderthal diet and subsistence. Quat Sci Rev 29:662–679.  https://doi.org/10.1016/j.quascirev.2009.11.016 CrossRefGoogle Scholar
  57. Henry A, Théry-Parisot I, Voronkova E (2009) La gestion du bois de feu en forêt boréale: problématique archéo-anthracologique et étude d’un cas ethnographique (Région de l’Amour, Sibérie). In: Proceedings of the XV World Congress. BAR International Series, pp 17–37Google Scholar
  58. Hernández CM, Galván B, Mallol C, Machado J, Molina FJ, Pérez LJ, Morales JV, Sanchis A, Vidal-Matutano P, Rodríguez Á (2014) El Abric del Pastor en el poblamiento neandertal de los Valles de Alcoy, Alicante (España). In: Sala R (ed) Los Cazadores Recolectores Del Pleistoceno y Del Holoceno En Iberia y El Estrecho de Gibraltar: Estado Actual Del Conocimiento Del Registro Arqueológico. Universidad de Burgos, Fundación Atapuerca, pp 319–323Google Scholar
  59. Hijmans, R.J., Cameron, S.E, Parra, J.L., Jones, P.G., Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25, 1965–1978CrossRefGoogle Scholar
  60. Holmes JA, Atkinson T, Darbyshire DF, Horne DJ, Joordens J, Roberts MB, Sinka KJ, Whittaker JE (2010) Middle Pleistocene climate and hydrological environment at the Boxgrove homonin site (West Sussex, UK) from ostracod records. Quat Sci Rev 29:1515–1527CrossRefGoogle Scholar
  61. Jackson ST, Williams JW (2004) Modern analogs in Quaternary paleoecology: here today, gone yesterday, gone tomorrow? Annu Rev Earth Planet Sci 32CrossRefGoogle Scholar
  62. Jiménez-Espejo FJ, Martínez-Ruiz F, Finlayson C, Paytan A, Sakamoto T, Ortega-Huertas M, Finlayson G, Iijima K, Gallego-Torres D, Fa D (2007) Climate forcing and Neanderthal extinction in Southern Iberia: insights from a multiproxy marine record. Quat Sci Rev 26:836–852.  https://doi.org/10.1016/j.quascirev.2006.12.013 CrossRefGoogle Scholar
  63. Kelly RL (1983) Hunter-gatherer mobility strategies. J Anthropol Res:277–306CrossRefGoogle Scholar
  64. Lebreton V, Renault-Miskovsky J, Carrión JS, Dupré M (2006) Étude palynologique du remplissage de la Grote du Boquete de Zafarraya. In: Barroso C, De Lumley H (eds) La Grotte Boquete de Zafarraya. Monographies Institut de Paléontologie Humaine. Junta de Andalucía, Consejería de Cultura, Málaga, pp 629–660Google Scholar
  65. López A, Rosselló V (eds) (1978) Geografía de la provincia de Alicante. Excma Diputación Provincial de AlicanteGoogle Scholar
  66. López-García JM, Blain H-A, Benàssar M, Fernández-García M (2014) Environmental and climatic context of Neanderthal occupation in southwestern Europe during MIS3 inferred from the small-vertebrate assemblages. Quat Int 326-327:319–328CrossRefGoogle Scholar
  67. López-García JM, Valle C d, Cremaschi M, Peresani M (2015) Reconstruction of the Neanderthal and modern human landscape and climate from the Fumane cave sequence (Verona, Italy) using small-mammal assemblages. Quat Sci Rev 128:1–13.  https://doi.org/10.1016/j.quascirev.2015.09.013 CrossRefGoogle Scholar
  68. López-Sáez JA, López-García P, Cortés M (2007) Paleovegetación del Cuaternario reciente: estudio arqueopalinológico. Cueva Bajondillo (Torremolinos). Secuencia cronocultural y paleoambiental del Cuaternario reciente en la Bahía de Málaga. Centro de Ediciones de la Diputación Provincial de Málaga, pp 139–156Google Scholar
  69. Ludemann T (2010) Past fuel wood exploitation and natural forest vegetation in the Black Forest, the Vosges and neighbouring regions in western Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 291:154–165CrossRefGoogle Scholar
  70. Ludemann T, Michiels H-G, Nölken W (2004) Spatial patterns of past wood exploitation, natural wood supply and growth conditions: indications of natural tree species distribution by anthracological studies of charcoal-burning remains. Eur J For Res 123:283–292CrossRefGoogle Scholar
  71. Machado J, Pérez L (2015) Temporal frameworks to approach human behavior concealed in Middle Palaeolithic palimpsests: a high-resolution example from El Salt Stratigraphic Unit X (Alicante, Spain). Quat Int.  https://doi.org/10.1016/j.quaint.2015.11.050 CrossRefGoogle Scholar
  72. Machado J, Hernández CM, Mallol C, Galván B (2013) Lithic production, site formation and Middle Palaeolithic palimpsest analysis: in search of human occupation episodes at Abric del Pastor Stratigraphic Unit IV (Alicante, Spain). J Archaeol Sci 40:2254–2273.  https://doi.org/10.1016/j.jas.2013.01.002 CrossRefGoogle Scholar
  73. Machado J, Molina FJ, Hernández CM, Tarriño A, Galván B (2016) Using lithic assemblage formation to approach Middle Palaeolithic settlement dynamics: El Salt Stratigraphic Unit X (Alicante, Spain). Archaeol Anthropol Sci 9:1–29.  https://doi.org/10.1007/s12520-016-0318-z CrossRefGoogle Scholar
  74. Mallol C, Hernández CM, Cabanes D, Machado J, Sistiaga A, Pérez L, Galván B (2013a) Human actions performed on simple combustion structures: an experimental approach to the study of Middle Palaeolithic fire. Quat Int 315:3–15.  https://doi.org/10.1016/j.quaint.2013.04.009 CrossRefGoogle Scholar
  75. Mallol C, Hernández CM, Cabanes D, Sistiaga A, Machado J, Rodríguez Á, Pérez L, Galván B (2013b) The black layer of Middle Palaeolithic combustion structures. Interpretation and archaeostratigraphic implications. J Archaeol Sci 40:2515–2537.  https://doi.org/10.1016/j.jas.2012.09.017 CrossRefGoogle Scholar
  76. Mallol C, Hernández CM, Mercier N, Falguères C, Ben-Arous E, Cabanes D, Carrancho A, Vidal-Matutano P, Pérez L, Connolly R, Mayor Á, Galván B (2019) Fire and short-term human occupations in Iberia during MIS 4: Evidence from Abric del Pastor (Alcoy, Spain). Sci Rep 9:18281.  https://doi.org/10.1038/s41598-019-54305-9
  77. Marston JM (2009) Modeling wood acquisition strategies from archaeological charcoal remains. J Archaeol Sci 36:2192–2200CrossRefGoogle Scholar
  78. Mas B, Allué E, de la Torre MS, Parque Ó, Tejero JM, Mangado X, Fullola JM (2018) Settlement patterns during the Magdalenian in the South-Eastern Pyrenees, Iberian Peninsula A territorial study based on GIS. J Archaeol Sci Rep 22:237–247Google Scholar
  79. Ortloff CR, Kolata AL (1993) Climate and collapse: agro-ecological perspectives on the decline of the Tiwanaku state. J Archaeol Sci 20:195–221CrossRefGoogle Scholar
  80. Ozenda P (1982) Les végétaux dans la biosphère. Doin Éditeurs. ed, ParisGoogle Scholar
  81. Pardo-Gordó S (2017) Sistemas Complejos Adaptativos y Simulación computacional en Arqueología. Trab Prehist 74(1):9–25CrossRefGoogle Scholar
  82. Pérez L, Sanchis A, Hernández CM, Galván B, Sala R, Mallol C (2017) Hearths and bones: an experimental study to explore temporality in archaological contexts based on taphonomical changes in burnt bones. J Archaol Sci Rep 11:287–309Google Scholar
  83. Pettitt P, Pike AW (2001) Blind in a cloud of data: problems with the chronology of Neanderthal extinction and anatomically modern human expansion. Antiquity 75:415–417CrossRefGoogle Scholar
  84. Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchardt SL, Clausen HB, Cvijanovic I, Dahl-Jensen D, Johnsen SJ, Fischer H (2014) A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat Sci Rev 106:14–28CrossRefGoogle Scholar
  85. Ray N, Adams J (2001) A GIS-based vegetation map of the world at the last glacial maximum (25,000-15,000 BP). Internet Archaeol 11:1–44Google Scholar
  86. Richter J (2006) Neanderthals in their landscape. Université de Liège, BelgiumGoogle Scholar
  87. Rios-Garaizar J, García-Moreno A (2015) Middle Paleolithic mobility patterns and settlement systems variability in Eastern Cantabrian Region (Iberian Peninsula): a GIS-based resource patching modelling confronted to archaeological record. In: Conard NJ (Ed) Settlement Dynamics of the Middle Paleolithic and Middle Stone Age. Tübingen publications in prehistory, pp 329–360Google Scholar
  88. Rivas-Martinez S (1987) Memoria del mapa de series de vegetación de España: 1:400.000. ICONAGoogle Scholar
  89. Rodríguez-Cintas Á, Cabanes D (2015) Phytolith and FTIR studies applied to combustion structures: the case of the Middle Paleolithic site of El Salt (Alcoy, Alicante). Quat Int.  https://doi.org/10.1016/j.quaint.2015.09.043 CrossRefGoogle Scholar
  90. Ros T (1985) Contribució antracoanalítica a l’estudi de l’entorn vegetal de l’home del Paleolític superior a l’Edat de Ferro a Catalunya. Unpublished Master Dissertation. Universitat Autònoma de BarcelonaGoogle Scholar
  91. Sánchez-Goñi MF, Eynaud F, Turon J, Shackleton N (1999) High resolution palynological record of the Iberian margin: direct land-sea correlation for the Last Interglacial complex. Earth Planet Sci Lett 171:123–137CrossRefGoogle Scholar
  92. Serra Laliga L, Soler J (2011) Flora del Parc Natural de la Font Roja. Caja Mediterráneo, AlcoiGoogle Scholar
  93. Sistiaga A, Mallol C, Galván B, Summons RE (2014) The Neanderthal meal: a new perspective using faecal biomarkers. PLoS One 9:e101045.  https://doi.org/10.1371/journal.pone.0101045 CrossRefGoogle Scholar
  94. Stringer C, Pälike H, van Andel TH, Huntley B, Valdes P, Allen JR (2004) Climatic stress and the extinction of the Neanderthals. In: Van Andel TH, Davies W (eds) Neanderthal and modern humans in the European landscape of the last glaciation: archaeological results of the Stage 3 Project. Oxbow books, London, pp 233–240Google Scholar
  95. Terradas X, Mora R, Martínez J, Casellas S (1993) La Roca dels Bous en el contexto de la transición Paleolítico medio-superior en el NE de la península Ibérica, In: Cabrera Valdés V (Ed) El origen del hombre moderno en el suroeste de Europa, 247–257 UNEDGoogle Scholar
  96. Tobler W (1970) A computer movie simulating urban growth in the Detroit Region. Econ Geogr 46:234–340CrossRefGoogle Scholar
  97. Tzedakis P, Hughen K, Cacho I, Harvati K (2007) Placing late Neanderthals in a climatic context. Nature 449:206–208CrossRefGoogle Scholar
  98. Uzquiano P (1992) L’Homme et le bois au Paléolithique en région cantabrique, Espagne Exemples d’Altamira et d’El Buxu. Bull Soc Bot France 139:361–372Google Scholar
  99. Uzquiano P (2008) Domestic fires and vegetation cover among Neanderthalians and anatomically modern human groups (>53-30 kyr BP) in the Cantabrian region (Cantabria, northern Spain). In: Fiorentino G, Magri D (Eds) Charcoals from the past. cultural and palaoenvironmental implications. Proceedings of the Third International Meeting of Anthracology, Cavallino – Lecce (Italy), June 28th – July 1st 2004. BAR international series 1807, pp 273-285Google Scholar
  100. Uzquiano P (2014) Wood resource exploitation by Cantabrian Late Upper Palaeolithic groups (N Spain) regarding MIS 2 vegetation dynamics. Quat Int 337:154–162CrossRefGoogle Scholar
  101. Uzquiano P, Arbizu M, Arsuaga JL, Adan G, Aranburu A, Iriarte E (2008) Datos paleoflorísticos en la cuenca media del Nalón entre 40-32 Ka. BP: Antracoanálisis de la Cueva del Conde (Santo Adriano, Asturias). Cuaternario y Geomorfología 22:121–133Google Scholar
  102. Uzquiano P, Yravedra J, Zapata BR, García MJG, Sesé C, Baena J (2012) Human behaviour and adaptations to MIS 3 environmental trends (> 53–30 ka BP) at Esquilleu cave (Cantabria, northern Spain). Quat Int 252:82–89CrossRefGoogle Scholar
  103. Van Huissteden K, Vanderbergue J, Pollard D (2003) Palaeotemperature reconstructions of the European permafrost zone during marine oxygen isotope stage 3 compared with climate model results. J Quat Sci 18(5):453–464CrossRefGoogle Scholar
  104. Vaquero M, Pastó I (2001) The definition of spatial units in Middle Palaeolithic sites: the hearth-related assemblages. J Archaeol Sci 28:1209–1220CrossRefGoogle Scholar
  105. Vidal-Matutano P (2015) Evidència de recol· lecció de teix (Taxus baccata L.) pels grups neandertals de l’Abric del Pastor (Alcoi, Alacant). Recerques del Museu d’Alcoi 24:7–20Google Scholar
  106. Vidal-Matutano P (2016) Around the fire: Landscape, climate and firewood management in hunter-gatherer groups during the Middle Palaeolithic (Alicante, Spain) (unpublished doctoral dissertation). Universitat de ValènciaGoogle Scholar
  107. Vidal-Matutano P (2017) Firewood and hearths: Middle Palaeolithic woody taxa distribution from El Salt, Stratigraphic Unit Xb (Eastern Iberia). Quat Int 457:74–84CrossRefGoogle Scholar
  108. Vidal-Matutano P, Hernández CM, Galván B, Mallol C (2015) Neanderthal firewood management: evidence from Stratigraphic Unit IV of Abric del Pastor (Eastern Iberia). Quat Sci Rev 111:81–93CrossRefGoogle Scholar
  109. Vidal-Matutano P, Henry A, Théry-Parisot I (2017) Dead wood gathering among Neanderthal groups: charcoal evidence from Abric del Pastor and El Salt (Eastern Iberia). J Archaeol Sci 80:109–121CrossRefGoogle Scholar
  110. Vidal-Matutano P, Pérez-Jordà G, Hernández C, Galván B (2018) Macrobotanical evidence (wood charcoal and seeds) from the Middle Palaeolithic site of El Salt, Eastern Iberia: Palaeoenvironmental data and plant resources catchment areas. J Archaeol Sci Rep 19:454–464Google Scholar
  111. Wescott K, Brandon RJ (2000) Practical applications of GIS for archaeologists: a predictive modeling toolkit. Taylor & FrancisGoogle Scholar
  112. Wheatley D, Gillings M (2002) Spatial technology and archaeology: the archaeological applications of GIS. Taylor and FrancisGoogle Scholar
  113. Whitelaw T (1983) People and space in hunter-gatherer camps: a generalizing approach in ethnoarchaeology. Archaeol Rev Cambridge 2:48–66Google Scholar
  114. Whitelaw T (1991) Some dimensions of variability in the social organization of community space among foragers. In: Gamble C, Boismier WA (Eds) Ethnoarchaeological Approaches to Mobile Campsites: Hunter-Gatherer and Pastoralist Case Studies. International Monographs in Prehistory, pp 139–188Google Scholar
  115. Wright HE Jr (1993) Environmental determinism in near eastern prehistory. Curr Anthropol 34:458–469CrossRefGoogle Scholar
  116. Yll EI, Carrión JS, Pantaleón J, Dupré M, La Roca N, Roure JM, Pérez-Obiols R (2003) Palinología del Cuaternario reciente en la Laguna de Villena (Alicante). An Biol 25:65–72Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.TARHA Research Group, Universidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  2. 2.Université Côte-d’Azur CEPAM, CNRSNiceFrance
  3. 3.Departament de Prehistòria, Arqueologia i Història AntigaValenciaSpain
  4. 4.Departament de Prehistòria, GRAMPO Research Group (SGR-2017-1302)Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain

Personalised recommendations