Advertisement

Diet analysis reveals pre-historic meals among the Loma San Gabriel at La Cueva de Los Muertos Chiquitos, Rio Zape, Mexico (600–800 CE)

  • Elisa PucuEmail author
  • Julia Russ
  • Karl Reinhard
Original Paper
  • 15 Downloads
Part of the following topical collections:
  1. Coprolite Research: Archaeological and Paleoenvironmental Potentials

Abstract

Coprolites have been a source of study for archeologists due to several reasons: they not only provide information on the life and nutritional habits of ancient individuals but also on their health. In this paper, we processed 10 coprolites collected at La Cueva de Los Muertos Chiquitos (600–800 CE), Rio Zape, Mexico, with acetolysis solution for pollen analysis. The number of pollen grains/gram of each coprolite sample was quantified along with the macroscopic remains of these samples. The main food item ingested by the population was maize, followed by Agave. Squash blossoms were also part of their food source determined by the presence of pollen grains. In macroremains, we identified rodent bones, plant seeds, and Agave fibers. The macroscopic analysis of the samples fits with the analysis of smaller remains, giving an idea of the meal represented by each coprolite analyzed. We relate these results to previous microbiome studies of coprolite samples from the same archeological site and provide a discussion on the relevancy of studying macro- and microremains that can be applied to microbiome interpretation analysis.

Keywords

Diet Archaeoparasitology Coprolites Pollen 

Notes

Funding information

This study was financed by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - 206047/2017-7).

References

  1. Angelakis E, Bachar D, Yasir M, Musso D, Djossou F, Gaborit B et al (2019a) Treponema species enrich the gut microbiota of traditional rural populations but are absent from urban individuals. New Microbes New Infections 27:14–21CrossRefGoogle Scholar
  2. Angelakis E, Bachar D, Yasir M, Musso D, Djossou F, Melenotte C et al (2019b) Comparison of the gut microbiota of obese individuals from different geographic origins. New Microbes and New Infections.  https://doi.org/10.1016/j.nmni.2018.11.005 CrossRefGoogle Scholar
  3. Arendt M, Cairns KM, Ballard JWO, Savolainen P, Axelsson E (2016) Diet adaptation in dog reflects spread of prehistoric agriculture. Heredity 117(5):301CrossRefGoogle Scholar
  4. Armelagos GJ (1994) You are what you eat. Paleonutrition: the diet and health of prehistoric Americans Southern Illinois University at Carbondale Center for Archaeological Investigations Occasional Paper 22:235–244Google Scholar
  5. Backwell LR, D’Errico F (2001) Evidence of termite foraging by Swartkrans early hominids. Proc Natl Acad Sci 98:1358–1363CrossRefGoogle Scholar
  6. Brooks RH, Kaplan L, Cutler HC, Whitaker TW (1962) Plant material from a cave on the Rio Zape, Durango, Mexico. Am Antiq 27(3):356–369CrossRefGoogle Scholar
  7. Butler JRA, Du Toit JT (2002) Diet of free-ranging domestic dogs (Canis familiaris) in rural Zimbabwe: implications for wild scavengers on the periphery of wildlife reserves. Animal Conservation Forum 5(1):29–37CrossRefGoogle Scholar
  8. Cano RJ, Rivera-Perez J, Toranzos GA, Santiago-Rodriguez TM, Narganes-Storde YM, Chanlatte-Baik L et al (2014) Paleomicrobiology: revealing fecal microbiomes of ancient indigenous cultures. PLoS One 9(9):e106833CrossRefGoogle Scholar
  9. Cerqueira MT, Fry MM, Connor WE (1979) The food and nutrient intakes of the Tarahumara Indians of Mexico. Am J Clin Nutr 32(4):905–915CrossRefGoogle Scholar
  10. Davenport ER, Sanders JG, Song SJ, Amato KR, Clark AG, Knight R (2017) The human microbiome in evolution. BMC Biology.  https://doi.org/10.1186/s12915-017-0454-7
  11. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559CrossRefGoogle Scholar
  12. Dean GW (2006) The science of coprolite analysis: the view from Hinds Cave. Palaeogeogr Palaeoclimatol Palaeoecol 237(1):67–79CrossRefGoogle Scholar
  13. Dominguez-Bello MG, Blaser MJ (2011) The human microbiota as a marker for migrations of individuals and populations. Annu Rev Anthropol 40:451–474CrossRefGoogle Scholar
  14. Gómez B, Junghans C, Aldasoro EM, Grehan JR (2016) The ghost moth (Lepidoptera: Hepialidae) as food of indigenous people in Mexico. J Insects Food Feed 2(1):53–59CrossRefGoogle Scholar
  15. Hagan RW, Hofman CA, Hübner A, Reinhard K, Schnorr S, Lewis CM Jr, Sankaranarayanan K, Warinner CG (2019) Comparison of extraction methods for recovering ancient microbial DNA from paleofeces. Am J Phys Anthropol.  https://doi.org/10.1002/ajpa.23978
  16. Hammerl EE, Baier MA, Reinhard KJ (2015) Agave chewing and dental wear: evidence from quids. PLoS One 10(7):e0133710CrossRefGoogle Scholar
  17. Hugot JP, Reinhard KJ, Gardner SL, Morand S (1999) Human enterobiasis in evolution: origin, specificity and transmission. Parasite 6:201–208CrossRefGoogle Scholar
  18. Irigoyen-Rascón F (2015) Tarahumara medicine: ethnobotany and healing among the Rarámuri of Mexico. University of Oklahoma PressGoogle Scholar
  19. Jiménez FA, Gardner SL, Araújo A, Fugassa M, Brooks RH, Racz E, Reinhard KJ (2012) Zoonotic and human parasites of inhabitants of Cueva de Los Muertos Chiquitos, Rio Zape Valley, Durango, Mexico. J Parasitol 98(2):304–310CrossRefGoogle Scholar
  20. Juárez-Montiel M, de León SR, Chávez-Camarillo G, Hernández-Rodríguez C, Villa-Tanaca L (2011) Huitlacoche (corn smut), caused by the phytopathogenic fungus Ustilago maydis, as a functional food. Rev Iberoam Micol 28(2):69–73CrossRefGoogle Scholar
  21. Kelso GK, Solomon AM (2006) Applying modern analogs to understand the pollen content of coprolites. Palaeogeogr Palaeoclimatol Palaeoecol 237(1):80–91CrossRefGoogle Scholar
  22. Linskens HF, Jorde W (1997) Pollen as food and medicine—a review. Econ Bot 51(1):78CrossRefGoogle Scholar
  23. Lugli GA, Milani C, Mancabelli L, Turroni F, Ferrario C, Duranti S et al (2017) Ancient bacteria of the Ötzi’s microbiome: a genomic tale from the Copper Age. Microbiome 5:5CrossRefGoogle Scholar
  24. Meade T (1994) A dietary analysis of coprolites from a prehistoric Mexican cave site. Thesis, University of Nebraska—Lincoln.Google Scholar
  25. Monárrez-Espino J, Martínez H, Greiner T (2001) Iron deficiency anemia in Tarahumara women of reproductive-age in Northern Mexico. Salud Publica Mex 43:392–401CrossRefGoogle Scholar
  26. Morrow JJ (2016) Exploring parasitism in antiquity through the analysis of coprolites and quids from La Cueva de los Muertos Chiquitos, Rio Zape, Durango, Mexico. Dissertation, University of Nebraska - Lincoln.Google Scholar
  27. Morrow JJ, Reinhard KJ (2016) Cryptosporidium parvum among coprolites from La Cueva de los Muertos Chiquitos (600–800 CE), Rio Zape Valley, Durango, Mexico. J Parasitol 102(4):429–435CrossRefGoogle Scholar
  28. Morrow JJ, Reinhard KJ (2018) The paleoepidemiology of Enterobius vermicularis (Nemata: Oxyuridae) Among the Loma San Gabriel at La Cueva de los Muertos Chiquitos (600–800 CE), Rio Zape Valley, Durango, Mexico. Comp Parasitol 85(1):27–33CrossRefGoogle Scholar
  29. Nordhoff M, Taras D, Macha M, Tedin K, Hans-Jurgen B, Wieler LH (2005) Treponema berlinense sp. nov., novel spirochaetes isolated from porcine feces. Int J Syst Evol Microbiol 55:1675–1680CrossRefGoogle Scholar
  30. Oeggl K, Kofler W, Schmidl A, Dickson JH, Egarter-Vigl E, Gaber O (2007) The reconstruction of the last itinerary of “Ötzi”, the Neolithic Iceman, by pollen analyses from sequentially sampled gut extracts. Quat Sci Rev 26(7–8):853–861CrossRefGoogle Scholar
  31. Patel S (2016) Nutrition, safety, market status quo appraisal of emerging functional food corn smut (huitlacoche). Trends Food Sci Technol 57:93–102CrossRefGoogle Scholar
  32. Quiñónez-Martínez M, Ruan-Soto F, Aguilar-Moreno IE, Garza-Ocañas F, Lebgue-Keleng T, Lavín-Murcio PA, Enríquez-Anchondo ID (2014) Knowledge and use of edible mushrooms in two municipalities of the Sierra Tarahumara, Chihuahua, Mexico. J Ethnobiol Ethnomed 10:67CrossRefGoogle Scholar
  33. Ramos-Elorduy J (2009) Anthropo-entomophagy: cultures, evolution and sustainability. Entomol Res 39(5):271–288CrossRefGoogle Scholar
  34. Reinhard KJ (1993) The utility of pollen concentration in coprolite analysis: expanding upon Dean’s comments. J Ethnobiol 9:31–44Google Scholar
  35. Reinhard KJ, Hevly RH (1991) Dietary and parasitological analysis of coprolites recovered from mummy 5, Ventana Cave, Arizona. Kiva 56(3):319–325CrossRefGoogle Scholar
  36. Reinhard KJ, Edwards SK, Damon TR, Meier DK (2006) Pollen concentration analysis of ancestral Pueblo dietary variation. J Palaeogeogr Palaeoclimatol Palaeoecol 237:92–109CrossRefGoogle Scholar
  37. Reinhard KJ, Johnson KL, LeRoy-Toren S, Wieseman K, Teixeira-Santos I, Vieira M (2012) Understanding the pathoecological relationship between ancient diet and modern diabetes through coprolite analysis: a case example from Antelope Cave, Mojave County, Arizona. Curr Anthropol 53:506–512CrossRefGoogle Scholar
  38. Ruiz-Herrera J, Martínez-Espinoza AD (1998) The fungus Ustilago maydis, from the aztec cuisine to the research laboratory. Int Microbiol 1(2):149–158Google Scholar
  39. Saboo SS, Thorat PK, Tapadiya GG, Khadabadi SS (2013) Ancient and recent medicinal uses of cucurbitaceae family. International Journal of Therapeutic Applications 9:11–19Google Scholar
  40. Schnorr SL, Sankaranarayanan K, Lewis CM Jr, Warinner C (2016) Insights into human evolution from ancient and contemporary microbiome studies. Curr Opin Genet Dev 41:14–26CrossRefGoogle Scholar
  41. Sobolik K (1994) Paleonutrition: the diet and health of prehistoric Americans. In: Southern Illinois University, Carbondale, Center for Archaeological Investigations Occasional PaperGoogle Scholar
  42. Sponheimer M, Lee-Thorp J, de Ruiter D, Codron D, Codron J, Baugh AT, Thackeray F (2005) Hominins, sedges, and termites: new carbon isotope data from the Sterkfontein valley and Kruger National Park. J Hum Evol 48:301–312CrossRefGoogle Scholar
  43. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen et Spores 13(4):615–21Google Scholar
  44. Tett A, Huang KD, Asnicar F, Fehlner-Peach H, Pasolli E, Karcher N, Armanini F, Manghi P, Bonham K, Zolfo M, De Filippis F (2019a) The Prevotella copri complex comprises four distinct clades that are underrepresented in Westernised populations. BioRxiv, p 600593Google Scholar
  45. Tett A, Huang KD, Asnicar F et al (2019b) The Prevotella copri complex comprises four distinct clades that are underrepresented in Westernised populations. BioRxiv, p 600593Google Scholar
  46. Tito RY, Macmil S, Wiley G, Najar F, Cleeland L, Qu C et al (2008) Phylotyping and functional analysis of two ancient human microbiomes. PLoS One 3(11):e3703CrossRefGoogle Scholar
  47. Tito RY, Knights D, Metcalf J, Obregon-Tito AJ, Cleeland L, Najar F et al (2012) Insights from characterizing extinct human gut microbiomes. PLoS One 7:e51146CrossRefGoogle Scholar
  48. Van Huis A (2017) Did early humans consume insects? J Insects Food Feed 3(3):161–163CrossRefGoogle Scholar
  49. Vinton SD, Perry L, Reinhard KJ, Santoro CM, Teixeira-Santos I (2009) Impact of empire expansion on household diet: the Inka in Northern Chile's Atacama Desert. PLoS One 4(11):e8069CrossRefGoogle Scholar
  50. Warinner C, Speller C, Collins MJ (2015) A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philos Trans R Soc B.  https://doi.org/10.1098/rstb.2013.0376 CrossRefGoogle Scholar
  51. Warnock PJ, Reinhard KJ (1992) Methods for extracting pollen and parasite eggs from Latrine Soils. J Archaeol Sci 19:261–264CrossRefGoogle Scholar
  52. Weyrich LS, Duchene S, Soubrier J, Arriola L, Llamas B, Breen J et al (2017) Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544(7650):357CrossRefGoogle Scholar
  53. Zonta ML, Oyhenart EE, Navone GT (2010) Nutritional status, body composition, and intestinal parasitism among the Mbyá-Guaraní communities of Misiones, Argentina. American Journal of Human Biology: The Official Journal of the Human Biology Association 22(2):193–200Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Hardin Hall, School of Natural ResourcesUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Laboratório de Biologia Molecular de Parasitos e Paleoparasitologia, Instituto BiomédicoUniversidade Federal FluminenseNiteróiBrazil
  3. 3.Morrison Microscopy Core Research Facility, Center for BiotechnologyUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations