Advertisement

Archaeological and Anthropological Sciences

, Volume 11, Issue 11, pp 6305–6314 | Cite as

Comparisons between methods for analyzing dental calculus samples from El Mirador cave (Sierra de Atapuerca, Spain)

  • Ana BucchiEmail author
  • Aitor Burguet-Coca
  • Isabel Expósito
  • Francisco Javier Aceituno Bocanegra
  • Marina Lozano
Original Paper
  • 242 Downloads

Abstract

Microremains entrapped in dental calculus are being used as a source of information to address a number of archeological questions. However, current laboratory procedures may affect the recovery of microremains and this issue has not been thoroughly investigated. This study involved the analysis of dental calculus from five Chalcolithic individuals from El Mirador cave (Sierra de Atapuerca, Spain) from a methodological perspective. Two sample processing protocols published in the archeological literature were used for this purpose, and results were compared to the El Mirador archaeobotanical record published elsewhere. Analyzed as a whole, the microremains found in the dental calculus samples are consistent with a population immersed in a farming economy, although they are not representative of the richness of the archaeobotanical record of the site. Furthermore, the two protocols delivered different results, in terms of the number of microremains identified, the time required for analysis, and associated contamination problems. This data indicates that the method selected may affect the results. We recommend further research using a larger sample set to fully understand how methodological factors affect the preservation and observation of microremains embedded in dental calculus. We also call for a discussion on the role of dental calculus in archeological research.

Keywords

Dental calculus Sample processing El Mirador cave Microremains representation Chalcolithic 

Notes

Acknowledgments

We thank Francisco Luengo for the photography advice and Josep Maria Vergès for his help understanding the archeological site studied here. We are also grateful to the reviewers for their comments which we think have help us to improve this article.

Funding information

This work was supported by the research grants from the Dirección General de Investigación of Ministerio Ciencia y Tecnología (Spain), MICINN-FEDER PGC2018-093925-B-C32, with the financial support of the Generalitat de Catalunya, AGAUR agency, 2017 SGR 1040 and 2017 SGR 836  Research Group, and with the URV Project 2016PFR-URV-B2-17. A. B. would like to acknowledge support of the Education, Audiovisual, and Culture Executive Agency (EACEA) for the Erasmus Mundus Grant and to the Becas Chile Program of the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT, Chile). A. Burguet-Coca’s research is funded by Fundación Atapuerca.

References

  1. Aceituno FJ, López JA (2012) Caracterización morfológica de almidones de los géneros Triticum y Hordeum en la Península Ibérica. Trab Prehist 69(2):332–348CrossRefGoogle Scholar
  2. Adler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW, Haak W, Parkhill J (2013) Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet 45(4):450–455CrossRefGoogle Scholar
  3. Albert RM, Ruíz JA, Sans A (2016). PhytCore ODB. http://www.phytcore.org/phytolith/index.php. Accessed 20 April 2016
  4. Armitage PL (1975) The extraction and identification of opal phytoliths from the teeth of ungulates. J Archaeol Sci 2:187–197CrossRefGoogle Scholar
  5. Arráiz H, Barbarin N, Pasturel M, Beaufort L, Domínguez-Rodrigo M, Barboni D (2016) Starch granules identification and automatic classification based on an extended set of morphometric and optical measurements. J Archaeol Sci Rep 7:169–179Google Scholar
  6. Buckley S, Usai D, Jakob T, Radini A, Hardy K (2014) Dental calculus reveals unique insights into food items, cooking and plant processing in prehistoric central Sudan. PLoS One 9(7):e100808CrossRefGoogle Scholar
  7. Cabanes D, Burjachs F, Expósito I, Rodríguez A, Allué E, Euba I, Vergés JM (2009) Formation processes through archaeobotanical remains: the case of the Bronze Age levels in El Mirador cave, Sierra de Atapuerca, Spain. Quat Int 193(1):160–173CrossRefGoogle Scholar
  8. Ceperuelo D, Lozano M, Duran-Sindreu F, Mercadé M (2015) Supernumerary fourth molar and dental pathologies in a Chalcolithic individual from the El Mirador cave site (Sierra de Atapuerca, Burgos, Spain). HOMO-J Comp Hum Biol 66(1):15–26CrossRefGoogle Scholar
  9. Clark JS (1988) Particles motion and the theory of charcoal analysis: source area, transport, deposition, and sampling. Quat Res 30:67–80CrossRefGoogle Scholar
  10. Crowther A, Haslam M, Oakden N, Walde D, Mercader J (2014) Documenting contamination in ancient starch laboratories. J Archaeol Sci 49:90–104CrossRefGoogle Scholar
  11. Cummings LS, Yost C, Sołtysiak A (2016) Plant microfossils in human dental calculus from Nemrik 9, a pre-Pottery Neolithic site in northern Iraq. Archaeol Anthropol Sci 10:883–891.  https://doi.org/10.1007/s12520-016-0411-3 CrossRefGoogle Scholar
  12. De La Fuente C, Flores S, Moraga M (2013) DNA from human ancient bacteria: a novel source of genetic evidence from archaeological dental calculus. Archaeometry 55(4):767–778CrossRefGoogle Scholar
  13. Dudgeon JV, Tromp M (2014) Diet, geography and drinking water in Polynesia: microfossil research from archaeological human dental calculus, Rapa Nui (Easter Island). Int J Osteoarchaeol 24(5):634–648CrossRefGoogle Scholar
  14. Eshed V, Gopher A, Hershkovitz I (2006) Tooth wear and dental pathology at the advent of agriculture: new evidence from the Levant. Am J Phys Anthropol 130(2):145–159CrossRefGoogle Scholar
  15. Gómez-Sánchez D, Olalde I, Pierini F, Matas-Lalueza L, Gigli E, Lari M, Civit S, Lozano M, Vergès JM, Caramelli D, Ramírez O, Lalueza-Fox C (2014) Mitochondrial DNA from El Mirador cave (Atapuerca, Spain) reveals the heterogeneity of Chalcolithic populations. PLoS One 9(8):e105105CrossRefGoogle Scholar
  16. Hardy K, Blakeney T, Copeland L, Kirkham J, Wrangham R, Collins M (2009) Starch granules, dental calculus and new perspectives on ancient diet. J Archaeol Sci 36(2):248–255CrossRefGoogle Scholar
  17. Hardy K, Buckley S, Collins MJ, Estalrrich A, Brothwell D, Copeland L, García-Tabernero A, García-Vargas S, Rasilla M, Lalueza-Fox C, Huguet R, Bastir M, Santamaría D, Madella M, Wilson J, Cortés ÁF, Rosas A (2012) Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99(8):617–626CrossRefGoogle Scholar
  18. Hardy K, Radini A, Buckley S, Sarig R, Copeland L, Gopher A, Barkai R (2015) Dental calculus reveals potential respiratory irritants and ingestion of essential plant- based nutrients at Lower Palaeolithic Qesem cave Israel. Quat Int 30:1–7Google Scholar
  19. Henry AG, Piperno DR (2008) Using plant microfossils from dental calculus to recover human diet: a case study from Tell al-Raq¯a’i, Syria. J Archaeol Sci 35(7):1943–1950CrossRefGoogle Scholar
  20. Henry AG, Brooks AS, Piperno DR (2011) Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proc Natl Acad Sci U S A 108(2):486–491CrossRefGoogle Scholar
  21. Henry AG, Ungar PS, Passey BH, Sponheimer M, Rossouw L, Bamford M, Berger L (2012) The diet of Australopithecus sediba. Nature 487(7405):90–93CrossRefGoogle Scholar
  22. Henry AG, Brooks AS, Piperno DR (2014) Plant foods and the dietary ecology of Neanderthals and early modern humans. J Hum Evol 69:44–54CrossRefGoogle Scholar
  23. Henry AG, Spiteri CD, Büdel T, Hutschenreuther A, Schmidt S, Watzke J (2016) Methods to isolate and quantify damaged and gelatinized starch grains. J Archaeol Sci Rep 10:142–146Google Scholar
  24. ICSN, working group (2011). International code for starch nomenclature. http://fossilfarm.org/ICSN/Code.html. Accessed 20 April, 2016
  25. Larsen CS, Shavit R, Griffin MC (1991) Dental caries evidence for dietary change: an archaeological context. In: Kelly MA, Larsen CS (eds) Advances in dental anthropology. Wiley-Liss, New York, pp 179–202Google Scholar
  26. Leonard C, Vashro L, O’Connell JF, Henry AG (2015) Plant microremains in dental calculus as a record of plant consumption: a test with Twe forager-horticulturalists. J Archaeol Sci Rep 2:449–457Google Scholar
  27. Lieverse AR (1999) Diet and the aetiology of dental calculus. Int J Osteoarchaeol 9(4):219–232CrossRefGoogle Scholar
  28. López-Merino L, Peña-Chocarro L, Ruiz-Alonso M, López-Sáez JA, Sánchez-Palencia J (2010) Beyond nature: the management of a productive cultural landscape in Las Médulas area (El Bierzo, León, Spain) during pre-Roman and Roman times. Plant Biosystems 144(4):909–923CrossRefGoogle Scholar
  29. Lozano M, de Castro JB, Arsuaga JL, Carbonell E (2017) Diachronic analysis of cultural dental wear at the Atapuerca sites (Spain). Quat Int 433:243–250CrossRefGoogle Scholar
  30. Madella M, Alexandré A, Ball T (2005) International code for phytolith nomenclature 1.0. Ann Bot 96(2):253–260CrossRefGoogle Scholar
  31. Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N, Roodenberg SA, Sirak K (2015) Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528(7583):499–503CrossRefGoogle Scholar
  32. Miola A (2012) Tools for non-pollen palynomorphs (NPPs) analysis: a list of quaternary NPP types and reference literature in English language (1972–2011). Rev Palaeobot Palynol 186:142–161CrossRefGoogle Scholar
  33. Peña-Chocarro L (2000) Agricultura y alimentación vegetal en el poblado de la Edad del Bronce de Peñalosa (Baños de la Encina, Jaén). Complutum 11:209–219Google Scholar
  34. Piperno DR (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. Rowman Altamira, OxfordGoogle Scholar
  35. Power RC, Salazar-García DC, Wittig RM, Henry AG (2014) Assessing use and suitability of scanning electron microscopy in the analysis of microremains in dental calculus. J Archaeol Sci 49:160–169CrossRefGoogle Scholar
  36. Power RC, Salazar-García DC, Wittig RM, Freiberg M, Henry AG (2015a) Dental calculus evidence of Taï Forest chimpanzee plant consumption and life history transitions. Sci Rep 5:1–13CrossRefGoogle Scholar
  37. Power RC, Salazar-García DC, Straus LG, Morales MRG, Henry AG (2015b) Microremains from El Mirón cave human dental calculus suggest a mixed plant–animal subsistence economy during the Magdalenian in northern Iberia. J Archaeol Sci 60:39–46CrossRefGoogle Scholar
  38. Preus HR, Marvik OJ, Selvig KA, Bennike P (2011) Ancient bacterial DNA (aDNA) in dental calculus from archaeological human remains. J Archaeol Sci 38(8):1827–1831CrossRefGoogle Scholar
  39. Radini A, Buckley S, Rosas A, Estalrrich A, de la Rasilla M, Hardy K (2016) Neanderthals, trees and dental calculus: new evidence from El Sidron. Antiquity 90(350):290–301CrossRefGoogle Scholar
  40. Radini A, Buckley S, Nikita E, Copeland L, Hardy K (2017) Beyond food: the rich and varied pathways for inclusion of microscopic remains into ancient dental calculus. Am J Phys Anthropol 162:71–83CrossRefGoogle Scholar
  41. Rodríguez A, Allué E, Buxó R (2016) Agriculture and livestock economy among prehistoric herders based on plant macro-remains from El Mirador (Atapuerca, Burgos). Quat Int 414:272–284CrossRefGoogle Scholar
  42. Swain AM (1973) A history of fire and vegetation in northeastern Minnesota as recorded in lake sediments. Quat Res 3(3):383–390CrossRefGoogle Scholar
  43. Temple DH, Larsen CS (2007) Dental caries prevalence as evidence for agriculture and subsistence variation during the Yayoi period in prehistoric Japan: biocultural interpretations of an economy in transition. Am J Phys Anthropol 134(4):501–512CrossRefGoogle Scholar
  44. Torrence R, Wright R, Conway R (2004) Identification of starch granules using image analysis and multivariate techniques. J Archaeol Sci 31(5):519–532CrossRefGoogle Scholar
  45. Tromp M, Buckley H, Geber J, Matisoo-Smith E (2017) EDTA decalcification of dental calculus as an alternate means of microparticle extraction from archaeological samples. J Archaeol Sci Rep 14:461–466Google Scholar
  46. Uzquiano, P., y Zapata, L. (2000): Vegetación y subsistencia durante la Edad del Bronce en el Cantábrico Oriental: la cueva de Arenaza (S. Pedro de Galdanes, Bizkaia). Contributos das Ciencias e das Tecnologias para a arqueología da Península Ibérica, Procedeings 3° Congresso de Arqueologia Peninsular Vol. IX, Porto. ADECAP, pp: 51–63Google Scholar
  47. van Geel B (1978) A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands. Rev Palaeobot Palynol 25:1–120CrossRefGoogle Scholar
  48. van Geel B (2001) Non-pollen palynomorphs. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments: terrestrial, algal and silicaceous indicators, vol 3. Kluwer Academic Publishers, Dordrecht, pp 99–119CrossRefGoogle Scholar
  49. Vergès JM, Allué E, Angelucci D, Cebrià A, Díez C, Fontanals M, Manyanós A, Montero S, Moral S, Vaquero M, Zaragoza J (2002) La Sierra de Atapuerca durante el Holoceno: datos preliminaries sobre las ocupaciones de la Edad del Bronce en la Cueva de El Mirador (Ibeas de Juarros, Burgos). Trab Prehist 59(1):107–126CrossRefGoogle Scholar
  50. Vergès JM, Allué E, Angelucci D, Burjachs F, Carrancho A, Cebrià A, Expósito I, Fontanals M, Moral S, Rodríguez A, Vaquero M (2008) Los niveles neolíticos de la Cueva de El Mirador (Sierra de Atapuerca, Burgos): nuevos datos sobre la implantación y el desarrollo de la economía agropecuaria en la submeseta norte. In: Hernández MS, Soler JA, López JA (eds) Actas del IV Congreso del Neolítico Peninsular. MARQ, Alicante, pp 418–427Google Scholar
  51. Vergès JM, Allué E, Fontanals M, Morales JI, Martín P, Carrancho Á, Oms X (2016) El Mirador cave (Sierra de Atapuerca, Burgos, Spain): a whole perspective. Quat Int 414:236–243CrossRefGoogle Scholar
  52. Wesolowski V, de Souza SMFM, Reinhard KJ, Ceccantini G (2010) Evaluating microfossil content of dental calculus from Brazilian sambaquis. J Archaeol Sci 37(6):1326–1338CrossRefGoogle Scholar
  53. Zapata, L., (2002): Del Calcolítico a la época romana en el País Vasco atlántico la expansión agrícola y los nuevos paisajes en Origen de la agricultura en el País Vasco y transformaciones en el paisaje. Kobie (anejo 4), Diputación Foral de Bizkaia, pp: 169–188Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  1. 1.Institut Català de Paleoecologia Humana i Evolució Social (IPHES)TarragonaSpain
  2. 2.Àrea de PrehistòriaUniversitat Rovira i Virgili (URV)TarragonaSpain
  3. 3.Departamento de AntropologíaUniversidad de AntioquiaMedellínColombia

Personalised recommendations