Advertisement

Archaeological and Anthropological Sciences

, Volume 11, Issue 11, pp 6141–6159 | Cite as

Multi-isotope approaches to the Neolithic cemetery-cave of Bom Santo (Lisbon): new data and comparisons with fourth millennium BC populations from central–southern Portugal

  • António Faustino CarvalhoEmail author
  • David Gonçalves
  • Marta Díaz-Zorita Bonilla
  • Maria João Valente
Original Paper
  • 103 Downloads

Abstract

Previous multi-isotopic research on the human remains of the Neolithic cave-cemetery of Bom Santo (Lisbon, Portuguese Estremadura) led to the conclusion that this fourth millennium BC population was very heterogeneous at several levels. Two in particular were subsistence habits and mobility: although consumption of terrestrial foods was the norm, aquatic food sources totalling > 20% of overall diets were detected in 60% of the population, and, surprisingly, 79% of the individuals were classed as non-local, having lived most of their life in geologically older regions. These figures were however obtained on a sample of 15 individuals. Further isotopic analyses have enlarged the original sample to 35 individuals (i.e., half of the exhumed population) and were also employed in the study of the coeval cave-cemeteries of Barrão and Mureta. This has permitted a sounder depiction of past behaviours, with a structural difference being observed at both levels between Bom Santo and the latter sites: at the former cave, 70% of the population consumed > 20% of aquatic foods and 34% were non-local (23% from outside Estremadura), whereas the latter were all local and showed no signals of aquatic diets. Comparison with other fourth millennium BC populations in central-southern Portugal suggests a model where the exploitation of locally available aquatic/marine food sources was not mandatory but optional and that human mobility represented an important socio-economic behavioural feature of these (presumably) segmentary societies. How both aspects related to the then-emerging megalithic phenomenon is a question that should be investigated in future research.

Keywords

Neolithic Karst archaeology Megalithism Isotope analysis Subsistence Mobility 

Notes

Acknowledgments

The unpublished research presented in this work was carried out in the framework of the project directed by A.F.C. As origens biogeográficas dos primeiros construtores de megálitos de Portugal, funded by the Calouste Gulbenkian Foundation (Lisbon, Portugal) with the grant PGQNG19 Apoio a Projetos na Área da Arqueologia for the 2015–2016 biennium. D.G. acknowledges financial support from Fundação para a Ciência e a Tecnologia (SFRH/BPD/84268/2012; PEst-OE/SADG/UI0283/2013). Acknowledgments are also due to Museu Geológico and Museu Nacional de Arqueologia (Lisbon, Portugal) for allowing the study and sampling of human and animal remains housed in these museums and to Fiona Petchey (University of Waikato, New Zealand) for the determination of aquatic and marine foods in the diets of the human populations studied in this work and the previous collaborations that allowed a palaeodietary model for the late Prehistory of central-southern Portugal to be built. We also thank two anonymous reviewers for their useful comments on the first version of the manuscript. As usual, any errors or omissions are our own.

References

  1. Ambrose SH, Norr L (1993) Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: Malbert JB, Grupe G (eds) Prehistoric human bone. Archaeology at the molecular level. Springer-Verlag, Berlin, pp 1–35Google Scholar
  2. Beck J, Díaz-Zorita Bonilla M, Bocherens H, Díaz-del-Río P (2018) Feeding a third millennium BC mega-site: bioarchaeological analyses of palaeodiet and dental disease at Marroquíes (Jaén, Spain). J Anthropol Anthropol 52:23–43.  https://doi.org/10.1016/j.jaa.2018.07.001 CrossRefGoogle Scholar
  3. Bentley RA (2006) Strontium isotopes from the Earth to the archaeological skeleton: a review. J Arch Method Theory 13(3):135–187.  https://doi.org/10.1007/s10816-006-9009-x CrossRefGoogle Scholar
  4. Bocherens H, Drucker DG (2003) Trophic level isotopic enrichments for carbon and nitrogen in collagen: case studies from recent and ancient terrestrial ecosystems. Intern J Osteoarchaeol 13(1–2):46–53.  https://doi.org/10.1002/oa.662 CrossRefGoogle Scholar
  5. Bocherens H, Koch PL, Mariotti A, Geraads D, Jaeger JJ (1996) Isotopic biogeochemistry (13C, 18O) of mammal enamel from African Pleistocene hominid sites: implications for the preservation of paleoclimatic isotopic signals. Palaios 11:306–318.  https://doi.org/10.2307/3515241 CrossRefGoogle Scholar
  6. Bronk-Ramsey C (2017) OxCal Program v. 4.3.2. University of Oxford, Oxford http://c14.arch.ox.ac.uk Google Scholar
  7. Callou C (1997) Diagnose différentielle des principaux éléments squelettiques du lapin (genre Oryctolagus) et du lièvre (genre Lepus) en Europe occidentale. APCDA, Valbonne-Sophia AntipolisGoogle Scholar
  8. Carvalho AF (2013) Análise de isótopos estáveis de quatro indivíduos do Sepulcro 1 da necrópole de hipogeus da Sobreira de Cima (Vidigueira, Beja): primeiros resultados paleodietéticos para o Neolítico do interior alentejano. In: Valera AC (ed) Sobreira de Cima. Necrópole de hipogeus do Neolítico (Vidigueira, Beja). Era-Arqueologia, Lisbon, pp 109–112Google Scholar
  9. Carvalho AF (2014) Bom Santo cave (Lisbon) and the middle Neolithic societies of southern Portugal. Universidade do Algarve, FaroGoogle Scholar
  10. Carvalho AF (2016) On mounds and mountains. “Megalithic behaviours” in Bom Santo Cave, Montejunto mountain range (Lisbon, Portugal). Megalithic monuments and cult practices. Proceedings of the Second International Symposium. Neofit Rilski University Press, Blagoevgrad, pp 114–23Google Scholar
  11. Carvalho AF (2018) Before metal. Circulation of goods and human mobility in the Early and Middle Neolithic in Portuguese Estremadura. In: Cruz AR, Gibaja JF (eds) Interchange in pre- and protohistory. Case studies in Iberia, Romania, Turkey and Israel. Archaeopress, Oxford, pp 47–60Google Scholar
  12. Carvalho AF, Petchey F (2013) Stable isotope evidence of Neolithic palaeodiets in the coastal regions of Southern Portugal. J Isl Coast Archaeol 8(3):361–383.  https://doi.org/10.1080/15564894.2013.811447 CrossRefGoogle Scholar
  13. Carvalho AF, Rocha L (2016) Datação direta e análise de paleodietas dos indivíduos da anta de Cabeceira 4ª (Mora, Évora). DigitAR 3:53–61.  https://doi.org/10.14195/2182-844X_3_7 CrossRefGoogle Scholar
  14. Carvalho AF, Antunes-Ferreira N, Valente MJ (2003) A gruta-necrópole neolítica do Algar do Barrão (Monsanto, Alcanena). Rev Port Arq 6(1):101–109Google Scholar
  15. Carvalho AF, Alves-Cardoso F, Gonçalves D, Granja R, Cardoso JL, Dean RM, Gibaja JF, Masucci MA, Arroyo-Pardo E, Fernández E, Petchey F, Price TD, Mateus JE, Queiroz PF, Callapez PM, Pimenta C, Regala FT (2016) The Bom Santo Cave (Lisbon, Portugal): catchment, diet and patterns of mobility of a Middle Neolithic population. Eur J Archaeol 19(2):187–214.  https://doi.org/10.1179/1461957115Y.0000000014 CrossRefGoogle Scholar
  16. Carvalho AF, Gonçalves D, Alves-Cardoso F, Granja R (2019) Till death us do part? Human segmentation in funerary practices in the Middle Neolithic cemetery cave of Bom Santo (Montejunto mountain range, Portugal). In: Valera AC (ed) Fragmentation and depositions in pre and protohistoric Portugal. Era-Arqueologia, Lisbon, pp 71–84Google Scholar
  17. Cook GT, Bonsall C, Hedges REM, McSweeney K, Boronean V, Pettitt PB (2001) A freshwater diet-derived 14C reservoir effect at the Stone Age sites in the Iron Gates Gorge. Radiocarbon 43:453–460.  https://doi.org/10.1017/S0033822200038327 CrossRefGoogle Scholar
  18. Correia V (1921) El Neolítico de Pavia (Alentejo, Portugal). Comisión de Investigaciones Paleontológicas y Prehistóricas, MadridGoogle Scholar
  19. Cubas M, Peyroteo-Stjerna R, Fontanals-Colls M, Llorente-Rodríguez L, Lucquin A, Craig OE, Colonese C (2018) Long-term dietary change in Atlantic and Mediterranean Iberia with the introduction of agriculture: a stable isotope perspective. Archaeol Anthropol Sci.  https://doi.org/10.1007/s12520-018-0752-1 CrossRefGoogle Scholar
  20. Daveau S (1980) Espaço e tempo. Evolução do ambiente geográfico de Portugal ao longo dos tempos pré-históricos. Clio 2:13–37Google Scholar
  21. Dean RM, Carvalho AF (2014) Faunal remains, adornments and bone tools. In: Carvalho AF (ed) Bom Santo Cave (Lisbon) and the Middle Neolithic societies of southern Portugal. Universidade do Algarve, Faro, pp 195–205Google Scholar
  22. Díaz-Zorita Bonilla M, Beck J, Bocherens H, Díaz-del-Río P (2018) Isotopic evidence for large scale human aggregations in Copper Age Iberia. The mega-site of Marroquíes (Jaén, Spain). Antiquity 92(364):991–1007.  https://doi.org/10.15184/aqy.2018.33 CrossRefGoogle Scholar
  23. Fernández Domínguez E, Neff M, Novell G, Montgomery J (2019) Isótopos de estrôncio e análise de ADN mitocondrial: perspetivas sobre a estrutura populacional, parentesco e padrões de mobilidade. In: Carvalho AF (ed) O hipogeu campaniforme do Convento do Carmo (Torres Novas). Município de Torres Novas, pp 96–111Google Scholar
  24. Fernández-Crespo T, Sschulting RJ, Ordoño J, Rojo MÁ, Sesma J, García J, Altuna J, Mariezkurrena K, Arias P (2019) Isotopic evidence of strong reliance on animal foods and dietary heterogeneity among Early–Middle Neolithic communities of Iberia. Archaeol Anthropol Sci.  https://doi.org/10.1007/s12520-019-00889-2 CrossRefGoogle Scholar
  25. Fischer A, Olsen J, Richards M, Heinemeier J, Sveinbjörnsdóttir AÉ, Bennike P (2007) Coast-inland mobility and diet in the Danish Mesolithic and Neolithic: evidence from stable isotope values of humans and dogs. J Archaeol Sci 34:2125–2150.  https://doi.org/10.1016/j.jas.2007.02.028 CrossRefGoogle Scholar
  26. Frei KM, Price TD (2012) Strontium isotopes and human mobility in prehistoric Denmark. J Anthropol Archaeol Sci 4:103–114.  https://doi.org/10.1002/ajpa.21346 CrossRefGoogle Scholar
  27. Froehle AW, Kellner CM, Schoeninger M (2012) Multivariate carbon and nitrogen stable isotope model for the reconstruction of prehistoric human diet. Am J Phys Anthropol 147(3):352–369.  https://doi.org/10.1002/ajpa.21651 CrossRefGoogle Scholar
  28. Geyh MA (2001) Bomb radiocarbon dating of animal tissues and hair. Radiocarbon 43:723–730.  https://doi.org/10.1017/S0033822200041382 CrossRefGoogle Scholar
  29. Gonçalves VS (2008) A utilização pré-histórica da gruta de Porto Covo (Cascais). Câmara Municipal de Cascais, CascaisGoogle Scholar
  30. Gonçalves D, Granja R, Alves-Cardoso F, Carvalho AF (2014) Sample-specific sex estimation in archaeological contexts with commingled human remains: a case-study from the Middle Neolithic cave of Bom Santo in Portugal. J Archaeol Sci 49:185–191.  https://doi.org/10.1016/j.jas.2014.05.011 CrossRefGoogle Scholar
  31. Gonçalves D, Granja R, Alves-Cardoso F, Carvalho AF (2016) All different, all equal. Evidence of a heterogeneous Neolithic population at the Bom Santo Cave necropolis (Portugal). Homo 67(3):203–215.  https://doi.org/10.1016/j.jchb.2015.12.004 CrossRefGoogle Scholar
  32. Guiry EJ, Hillier M, Boaventura R, Silva AM, Oosterbeek L, Tomé T, Valera AC, Cardoso JL, Hepburn JC, Richards MP (2016) The transition to agriculture in south-western Europe: new isotopic insights from Portugal's Atlantic coast. Antiquity 90:604–616.  https://doi.org/10.15184/aqy.2016.34 CrossRefGoogle Scholar
  33. Hedges REM, Reynard LM (2007) Nitrogen isotopes and the trophic level of humans in archaeology. J Archaeol Sci 34:1240–1251.  https://doi.org/10.1016/j.jas.2006.10.015 CrossRefGoogle Scholar
  34. Jackes M, Lubell D (2016) New information on Melides stable isotopes. Antiquity 90:617–619.  https://doi.org/10.15184/aqy.2016.37 CrossRefGoogle Scholar
  35. Jones EL (2006) Prey choice, mass collecting, and the wild European rabbit (Oryctolagus cuniculus). J Anthrop Archaeol 25:275–289.  https://doi.org/10.1016/j.jaa.2005.11.002 CrossRefGoogle Scholar
  36. Knipper A, Mittnik A, Massy K, Kociumaka C, Kucukkalipci I, Maus M, Wittenborn F, Metz SE, Staskieicz A, Krause J, Stockhamrr P (2017) Female exogamy and gene pool diversification at the transition from the Final Neolithic to the Early Bronze Age in central Europe. PNAS 114(38):10083–10088.  https://doi.org/10.1073/pnas.1706355114 CrossRefGoogle Scholar
  37. Lubell D, Jackes M, Schwarcz H, Knyf M, Meiklejohn C (1994) The Mesolithic-Neolithic transition in Portugal: isotopic and dental evidence of diet. J Archaeol Sci 21:201–216.  https://doi.org/10.1006/jasc.1994.1022 CrossRefGoogle Scholar
  38. Nogueira AM (1927) Estação neolítica de Melides. Grutas sepulcrais. Com Serv Geol Port 16:41–54Google Scholar
  39. Petchey F (2014) Radiocarbon chronology and palaeodiets. In: Carvalho AF (ed) Bom Santo Cave (Lisbon) and the Middle Neolithic societies of southern Portugal. Universidade do Algarve, Faro, pp 143–150Google Scholar
  40. Petchey F, Spriggs M, Bedford S, Valentin F (2015) The chronology of occupation at Teouma, Vanuatu: use of a modified chronometric hygiene protocol and Bayesian modelling to evaluate midden remains. J Archaeol Sci Rep 4:95–105.  https://doi.org/10.1016/j.jasrep.2015.08.024 CrossRefGoogle Scholar
  41. Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecolgia 127:171–179.  https://doi.org/10.1007/s004420000578 CrossRefGoogle Scholar
  42. Price TD (2014) Isotope proveniencing. In: Carvalho AF (ed) Bom Santo Cave (Lisbon) and the Middle Neolithic societies of southern Portugal. Universidade do Algarve, Faro, pp 151–158Google Scholar
  43. Price TD (2015) Tracing past human movement: an example from the Muge middens. In: Bicho NF, Detry C, Price TD, Cunha E (eds) Muge 150th. The 150th anniversary of the discovery of Mesolithic shellmiddens, vol 1. Cambridge Scholars Publishing, Cambridge, pp 225–237Google Scholar
  44. Price TD, Grupe G, Schröter P (1994) Reconstruction of migration patterns in the Bell Beaker Period by stable strontium isotope analysis. Appl Geochem 9:413–417.  https://doi.org/10.1016/0883-2927(94)90063-9 CrossRefGoogle Scholar
  45. Price TD, Burton JH, Bentley AR (2002) The characterisation of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry 44:117–135.  https://doi.org/10.1111/1475-4754.00047 CrossRefGoogle Scholar
  46. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk-Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffman DL, Hogg AJ, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turner CSM, Van Der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 55(4):1869–1887.  https://doi.org/10.2458/azu_js_rc.55.16947 CrossRefGoogle Scholar
  47. Richards MP, Hedges REM (1999) A Neolithic revolution? New evidence of diet in the British Neolithic. Antiquity 73:891–897.  https://doi.org/10.1017/S0003598X00065649 CrossRefGoogle Scholar
  48. Rocha L (1999) Povoamento megalítico de Pavia. In: Contributo para o conhecimento da Pré-História regional. Câmara Municipal de Pavia, PaviaGoogle Scholar
  49. Rocha L (2009/10) As origens do Megalitismo funerário alentejano. Revisitando Manuel Heleno Promontoria 7–8:45–98Google Scholar
  50. Rocha L, Duarte C (2009) Megalitismo funerário no Alentejo central: os dados antropológicos das escavações de Manuel Heleno. In: Polo M, García-Prósper E (eds) Investigaciones histórico-médicas sobre salud y enfermidad en el Pasado. Sociedad Española de Paleopatología, Valencià, pp 763–781Google Scholar
  51. Saragoça P, Maurer A-F, Šoberl L, Lopes MC, Alfenim R, Leandro I, Umbelino C, Fernandes T, Valente MJ, Ribeiro S, Santos JF, Janeiro AI, Dias CB (2016) Stable isotope and multi-analytical investigation of Monte da Cegonha: a late antiquity population in southern Portugal. J Archaeol Sci Rep 9:728–742.  https://doi.org/10.1016/j.jasrep.2016.07.010 CrossRefGoogle Scholar
  52. Schoeninger M, DeNiro M, Tauber H (1983) Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. Science 220:1381–1383CrossRefGoogle Scholar
  53. Schoeninger M, DeNiro M (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Acta 48:625–639.  https://doi.org/10.1016/0016-7037(84)90091-7 CrossRefGoogle Scholar
  54. Schulting RJ (2011) Mesolithic-Neolithic transitions: an isotopic tour through Europe. In: Pinhasi R, Stock JT (eds) Human bioarchaeology of the transition to agriculture. John Wiley and Sons, London, pp 17–41Google Scholar
  55. Schulting RJ (2018) Dietary shifts at the Mesolithic-Neolithic transition in Europe: an overview of the stable isotope data. In: Lee-Thorp J, Katzenberg MA (eds) The Oxford handbook of archaeology of diet. Oxford University Press, OxfordGoogle Scholar
  56. Schulting RJ, Richards MP (2002) The west, the wild and the domesticated: the Mesolithic–Neolithic transition on the west coast of Scotland. Eur J Archaeol 5:147–188.  https://doi.org/10.1177/14619571020050020201 Google Scholar
  57. Schwarcz HP (1991) Some theoretical aspects of isotope palaeodiet studies. J Archaeol Sci 18:261–275.  https://doi.org/10.1016/0305-4403(91)90065-W CrossRefGoogle Scholar
  58. Sjögren K-G, Price TD, Ahlström T (2009) Megaliths and mobility in south-western Sweden. Investigating relations between a local society and its neighbours using strontium isotopes. J Anthropol Archaeol 28:85–101.  https://doi.org/10.1016/j.jaa.2008.10.001 CrossRefGoogle Scholar
  59. Slovak NM, Paytan A (2011) Applications of Sr isotopes in archaeology. Adv Isotope Geochem 5:743–768.  https://doi.org/10.1007/978-3-642-10637-8_35 CrossRefGoogle Scholar
  60. Tieszen LL, Fagre T (1993) Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite and soft tissues. In: Malbert JB, Grupe G (eds) Prehistoric human bone: archaeology at the molecular level. Springer-Verlag, Berlin, pp 121–155CrossRefGoogle Scholar
  61. Valente MJ, Carvalho AF (2014) Zooarchaeology in the Neolithic and chalcolithic of southern Portugal. Environ Archaeol 19(3):226–240.  https://doi.org/10.1179/1749631414Y.0000000022 CrossRefGoogle Scholar
  62. Valente MJ, Carvalho AF (forthcoming) Southern Portugal animal exploitation systems: trends and changes from Neolithic to Bronze Age. A follow-up overview. Environ ArchaeolGoogle Scholar
  63. Van Klinken GJ, Richards MP, Hedges REM (2000) An overview of causes for stable isotopic variations in past European human populations: environmental, ecophysiological and cultural effects. In: Ambrose SH, Katzenberg HA (eds) Biogeochemical approaches to paleodietary analysis. Kluwer Academic/Plenum, New York, pp 39–63Google Scholar
  64. Vis G-J, Kasse C, Vandenberghe J (2008) Late Pleistocene and Holocene palaeogeography of the Lower Tagus Valley (Portugal): effects of relative sea level, valley morphology and sediment supply. Quat Sci Rev 27:1682–1709.  https://doi.org/10.1002/jqs.1401 CrossRefGoogle Scholar
  65. Waterman AJ, Figueiredo A, Thomas JT, Peate DW (2013) Identifying migrants in the Late Neolithic burials of the Antas of Rego da Murta (Alvaiázere, Portugal) using strontium isotopes. Antrope 0:190–196Google Scholar
  66. Waterman AJ, Peate DW, Silva AM, Thomas JT (2014) In search of homelands: using strontium isotopes to identify biological markers of mobility in late prehistoric Portugal. J Archaeol Sci 42:119–127.  https://doi.org/10.1016/j.jas.2013.11.004 CrossRefGoogle Scholar
  67. Wright E, Waterman AJ, Peat DW, Kunst M, Cardoso JL, Detry C (2019) Animal mobility in chalcolithic Portugal: isotopic analyses of cattle from the sites of Zambujal and Leceia. J Archaeol Sci Rep 24:804–814.  https://doi.org/10.1016/j.jasrep.2019.02.005 CrossRefGoogle Scholar
  68. Žalaité I, Maurer AF, Grimes V, Silva AM, Ribeiro S, Santos JF, Dias CB, Valera AC (2018) Diet and mobility of fauna from Late Neolithic–Chalcolithic site of Perdigões, Portugal. J Archaeol Sci Rep 19:674–685.  https://doi.org/10.1016/j.jasrep.2018.03.033 CrossRefGoogle Scholar
  69. Zeder MA (2006) Reconciling rates of long bone fusion and tooth eruption and wear in sheep (Ovis) and goat (Capra). In: Ruscillo D (ed) Recent advances in ageing and sexing animal bones. Oxbow Books, Oxford, pp 87–118Google Scholar
  70. Zeder MA, Lapham HA (2010) Assessing the reliability of criteria used to identify postcranial bones in sheep, Ovis, and goats, Capra. J Archaeol Sci 37:2887–2905.  https://doi.org/10.1016/j.jas.2010.06.032 CrossRefGoogle Scholar
  71. Zilhão J, Carvalho AF (1996) O Neolítico do Maciço Calcário Estremenho. Crono-estratigrafia e povoamento. In: I Congrés del Neolític a la Península Ibèrica, vol 2. Gavà, Museo de Gavà, pp 659–671Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CEAACP—Centro de Estudos de Arqueologia, Artes e Ciências do Património, University of Algarve, F.C.H.S.FaroPortugal
  2. 2.Laboratório de Arqueociências (LARC/CIBIO/InBIO), Direção-Geral do Património CulturalLisbonPortugal
  3. 3.Department of Life SciencesResearch Centre for Anthropology and Health (CIAS)CoimbraPortugal
  4. 4.Department of Life SciencesLaboratory of Forensic Anthropology of the Centre for Functional EcologyCoimbraPortugal
  5. 5.Institut für Ur- und Frühgeschichte und Archäologie des Mittelalters & SFB 1070 “Ressourcenkulturen”University of TübingenTübingenGermany

Personalised recommendations