Advertisement

Measuring spatial structure in time-averaged deposits insights from Roc de Marsal, France

  • Jonathan S. ReevesEmail author
  • Shannon P. McPherron
  • Vera Aldeias
  • Harold L. Dibble
  • Paul Goldberg
  • Dennis Sandgathe
  • Alain Turq
Original Paper

Abstract

The use of space, both at the landscape and the site level, is considered an important aspect of hominin adaptations that changed through time. At the site level, spatial analyses are typically conducted on deposits thought to have a high degree of temporal resolution. Sites with highly time-averaged deposits are viewed as inferior for these analyses because repeated site visits obscure individual behavioral events. To the contrary, here, we take the view that behaviors that repeat themselves in a spatially structured way through time are exactly the kinds of behaviors that are potentially significant at an evolutionary timescale. In this framework, time averaging is seen not as a hindrance but rather as a necessary condition for viewing meaningful behavior. To test whether such patterning is visible in time-averaged deposits, we use spatial statistics to analyze a number of indices designed to measure lithic production, use and discard behaviors in a multi-layer, late Neandertal cave site in southwest France. We find that indeed some such patterning does exist, and thus sites with highly time-averaged deposits have the potential to contribute to our understanding of how hominin use of space varied through time. This is useful because a great many archaeological sites have highly time-average deposits. Interpreting the spatial patterning will likely require modeling to create expectations in time-averaged and likely emergent contexts such as these.

Keywords

Time-averaging Paleolithic Palimpsets Roc de Marsal Middle Paleolithic Spatial analysis 

Notes

Acknowledgments

The research at Roc de Marsal had the financial support of the US National Science Foundation (Grants Nos. 09177739 and 0551927), the Leakey Foundation, the University of Pennsylvania Research Foundation, the Service Régional de l’Archéologie d’Aquitaine and the Conseil Général de la Dordogne. The authors thank Jean-Jacques Hublin and the Max Planck Society for supporting this research presented here. JR thanks David Braun and the Center for the Advanced Study of Human Paleobiology at George Washington University for supporting his research. The approach taken here to time-averaged assemblages benefitted from valuable discussions with a number of people including Simon Holdaway, Sam Lin, Željko Režek, and Luke Premo. A special thanks goes to José Ramón Rabuñal Gayo who reviewed the code and code/text consistency. As always, all mistakes remain our own. We note that Harold Dibble participated fully in the research presented here and was able to comment on the nearly final manuscript. The Roc de Marsal team misses him greatly.

Supplementary material

12520_2019_871_MOESM1_ESM.Rmd
rMarkdown file used to make this document (RMD 15.9 KB)
12520_2019_871_MOESM2_ESM.pdf (6.4 mb)
Supplementary information (PDF 6.43 MB)
12520_2019_871_MOESM3_ESM.Rmd
rMarkdown file used to make the supplementary information (RMD 15.9 KB)
12520_2019_871_MOESM4_ESM.zip (12.9 mb)
Data files needed to compile markdown documents (ZIP 12.8 MB)

References

  1. Abe Y, Marean CW, Nilssen PJ, Assefa Z, Stone EC, Abe Y, Marean CW, Nilssen PJ, Assefa Z, Stone EC (2010) A review and critique of quantification procedures , and a new image-analysis GIS approach. Amer Antiq 67(4):643–63Google Scholar
  2. Aldeias V, Dibble HL, Sandgathe D, Goldberg P, McPherron SJP (2016) How heat alters underlying deposits and implications for archaeological fire features: a controlled experiment. J Archaeol Sci 67:64–79. Elsevier Ltd:  https://doi.org/10.1016/j.jas.2016.01.016 Google Scholar
  3. Aldeias V, Goldberg P, Sandgathe D, Berna F, Dibble HL, McPherron SP, Turq A, Rezek Z (2012) Evidence for Neandertal use of fire at Roc de Marsal (France). J Archaeol Sci 39(7):2414–23. Elsevier Ltd:  https://doi.org/10.1016/j.jas.2012.01.039 Google Scholar
  4. Alperson-Afil N (2008) Continual fire-making by Hominins at Gesher Benot Ya’aqov, Israel. Quat Sci Rev 27 (17-18):1733–9.  https://doi.org/10.1016/j.quascirev.2008.06.009 Google Scholar
  5. Alperson-Afil N, Sharon G, Kislev M, Melamed Y, Zohar I, Ashkenazi S, Rabinovich R, et al. (2009) Spatial organization of hominin activities at Gesher Benot Ya’aqov, Israel. Science 326(5960):1677–80.  https://doi.org/10.1126/science.1180695 Google Scholar
  6. Alperson-Afil N, Goren-Inbar N (2010) The Acheulian site of Gesher Benot Ya’aqov. Vol II. New YorkGoogle Scholar
  7. Alperson-Afil N (2017) Spatial analysis of fire: archaeological approach to recognizing early fire. Curr Anthropol 58(S16):S258–S266.  https://doi.org/10.1086/692721 Google Scholar
  8. Anselin L (1995) Local indicators of spatial association — LISA. Geogr Anal 27(2):93–115.  https://doi.org/10.1111/j.1538-4632.1995.tb00338.x Google Scholar
  9. Audouze F, Enloe JG (1997) High resolution archaeology at verberie: limits and interpretations. World Archaeol 29(2):195–207.  https://doi.org/10.1080/00438243.1997.9980373 Google Scholar
  10. Baales M (2001) From lithics to spatial and social organization: Interpreting the lithic distribution andraw material composition at the final palaeolithic site of Kettig (Central Rhineland, Geramny). J Archaeol Sci 28(2):127–41.  https://doi.org/10.1006/jasc.1999.0545 Google Scholar
  11. Bailey G (2007) Time perspectives, palimpsests and the archaeology of time. J Anthropol Archaeol 26(2):198–223.  https://doi.org/10.1016/j.jaa.2006.08.002 Google Scholar
  12. Bailey G, Galanidou N (2009) Caves palimpsests and dwelling spaces: Examples from the Upper Palaeolithic of south-east Europe. World Archaeol 41(2):215–41.  https://doi.org/10.1080/00438240902843733 Google Scholar
  13. Bamforth DB, Becker M, Hudson J (2005) Intrasite spatial analysis, ethnoarchaeology , and Paleoindian l on the Great Plains: the Allen site. Amer Antiq 70(3):561–80Google Scholar
  14. Bargalló A, Gabucio MJ, Rivals F (2016) Puzzling out a palimpsest: testing an interdisciplinary study in level O of Abric romaní. Quat Int 417:51–65.  https://doi.org/10.1016/j.quaint.2015.09.066 Google Scholar
  15. Baxter MJ, Beardah CC, Wright RVS (1997) Some archaeological applications of kernel density estimates. J Archaeol Sci 24(4):347–54.  https://doi.org/10.1006/jasc.1996.0119 Google Scholar
  16. Benito-Calvo A, de la Torre I (2011) Analysis of orientation patterns in Olduvai Bed I assemblages using GIS techniques : Implications for site formation processes. J Hum Evol 61(1):50–60. Elsevier Ltd:  https://doi.org/10.1016/j.jhevol.2011.02.011 Google Scholar
  17. Binford LR (1978) Dimensional analysis of behavior and site structure: learning from an Eskimo hunting stand. Amer Antiq 43(3):330–61Google Scholar
  18. Binford LR (1981) Behavioral archaeology and the ‘Pompei Premise’. J Anthropol Res 37(3):195–208.  https://doi.org/10.1017/CBO9781107415324.004 Google Scholar
  19. Bisson MS, Nowell A, Cordova C, Poupart M, Ames C (2014) Dissecting palimpsests in a Late Lower and Middle Paleolithic flint acquisition site on the Madaba Plateau. Jordan Quaternary Int 331:74–94. Elsevier Ltd; INQUA:  https://doi.org/10.1016/j.quaint.2013.05.031 Google Scholar
  20. Bivand R, Rundel C (2018) rgeos: interface to geometry engine - open source (‘GEOS’). https://CRAN.R-project.org/package=rgeos. R package version 0.4-2
  21. Bivand R, Pebesma E, Gómez-rubio V (2013) Applied spatial data analysis with R. Springer, New York.  https://doi.org/10.1007/978-0-387-78171-6 Google Scholar
  22. Blasco R, Rosell J, Sañudo P, Gopher A, Barkai R (2016) What happens around a fire: faunal processing sequences and spatial distribution at Qesem Cave (300 ka), Israel. Quat Int 398:190–209.  https://doi.org/10.1016/j.quaint.2015.04.031 Google Scholar
  23. Bordes F, Lafille J (1962) Découverte d’un Squelette d’enfant moustérien Dans Le Gisement de Roc de Marsal, Commune de Campagne-Du-Bugue (Dordogne). CR Acad Sci Paris 254:714–15Google Scholar
  24. Brooks A, Yellen J (1987) The preservation of activity areas in the archaeological record: ethnoarchaeological and archaeological work in Northwest Ngamiland, Botswana. In: Method and theory for activity area research: an ethnoarchaeological approach. Columbia University Press, New York, pp 63–106Google Scholar
  25. Carr C (1984) The nature of organization of intrasite archaeological records and spatial analytic approaches to their investigation. In: Advances in archaeological method and theory 7. Academic Press, Orlando, pp 103–22Google Scholar
  26. Castel J-C, Discamps E, Soulier M-C, Sandgathe D, Dibble HL, McPherron SJP, Goldberg P, Turq A (2017) Neandertal subsistence strategies during the Quina Mousterian at Roc de Marsal (France). Cleaning up a Messy Mousterian: how to describe and interpret Late Middle Palaeolithic chrono-cultural variability in Atlantic Europe 433(March):140–56.  https://doi.org/10.1016/j.quaint.2015.12.033 Google Scholar
  27. Clark AE (2016) Time and space in the middle paleolithic: spatial structure and occupation dynamics of seven open-air sites. Evol Anthropol 25(3):153–63.  https://doi.org/10.1002/evan.21486 Google Scholar
  28. Clark AE (2017) From activity areas to occupational histories: New methods to document the formation of spatial structure in Hunter-Gatherer sites. J Archaeol Method Theory 24(4):1300–1325. Journal of Archaeological Method; Theory:  https://doi.org/10.1007/s10816-017-9313-7 Google Scholar
  29. Clarkson C, Smith M, Marwick B, Fullagar R, Wallis LA, Faulkner P, Manne T, et al. (2015) The archaeology, chronology and stratigraphy of Madjedbebe (Malakunanja II): a site in northern Australia with early occupation. J Hum Evol 83(June):46–64.  https://doi.org/10.1016/j.jhevol.2015.03.014 Google Scholar
  30. Dibble HL, Chase PG, McPherron SP, Tuffreau A (1997) Testing the reality of a ‘living floor’ with archaeological data. Am Antiq 62(4):629–51Google Scholar
  31. Dibble HL, Schurmans UA, Iovita RP, McLaughlin MV (2005) The measurement and interpretation of cortex in lithic assemblages. Am Antiq 70(3):545–60.  https://doi.org/10.2307/40035313 Google Scholar
  32. Douglass MJ, Holdaway SJ, Fanning PC, Shiner JI (2015) An assessment and archaeological application of cortex measurment in lithic assemblages. Amer Antiq 19(1):64–82Google Scholar
  33. Ebert JI (1992) Distriubtional archaeology. University of Utah Press, Salt Lake CityGoogle Scholar
  34. Foley R (1981) Off-site archaeology: an alternative approach for the short-sited. In: Pattern of the Past: Studies in Honour of David Clarke. Cambridge University Press, Cambridge, vol 33, pp 139–53Google Scholar
  35. Galanidou N (1997) Home is weather the hearth is: the spatial organisation of the Upper Palaeolithic Rockshelter Occupation at Klithi and Kastritsa in Northwest Greece. BAR Internationla series, OxfordGoogle Scholar
  36. Goldberg P, Berna F (2010) Micromorphology and context. Quatern Int 214(1-2):56–62. Elsevier Ltd; INQUA:  https://doi.org/10.1016/j.quaint.2009.10.023 Google Scholar
  37. Goldberg P, Dibble H, Berna F, Sandgathe D, McPherron SJP, Turq A (2012) New evidence on Neandertal use of fire: examples from Roc de Marsal and Pech de l’azé IV. Neanderthal Home: Spatial Soc Behav 247(0):325–40.  https://doi.org/10.1016/j.quaint.2010.11.015 Google Scholar
  38. Goldberg P, Aldeias V, Dibble H, McPherron S, Sandgathe D, Turq A (2013) Testing the Roc de Marsal Neandertal “Burial” with Geoarchaeology. Archaeological and Anthropological Sciences, pp 1–11.  https://doi.org/10.1007/s12520-013-0163-2
  39. Gopher A, Parush Y, Assaf E, Barkai R (2016) Spatial aspects as seen from a density analysis of lithics at Middle Pleistocene Qesem Cave: Preliminary results and observations. Quatern Int 398:103–17. Elsevier Ltd:  https://doi.org/10.1016/j.quaint.2015.09.078 Google Scholar
  40. Gould RA, Yellen JE (1987) Man the hunted: Determinants of household spacing in desert and tropical foraging societies. J Anthropol Archaeol 6(1):77–103.  https://doi.org/10.1016/0278-4165(87)90017-1 Google Scholar
  41. Guérin G, Discamps E, Lahaye C, Mercier N, Guibert P, Turq A, Dibble HL et al (2012) Multi-method (TL and OSL), multi-material (Quartz and Flint) dating of the Mousterian Site of Roc de Marsal (Dordogne, France): correlating Neanderthal occupations with the climatic variability of MIS-3. J Archaeol Sci 39 (10):3071–84.  https://doi.org/10.1016/j.jas.2012.04.047 Google Scholar
  42. Guérin G, Frouin M, Tuquoi J, Thomsen KJ, Goldberg P, Aldeias V, Lahaye C, et al. (2017) The complementarity of luminescence dating methods illustrated on the Mousterian sequence of the Roc de Marsal: a series of reindeer-dominated, Quina Mousterian layers dated to MIS 3. Cleaning up a Messy Mousterian: how to describe and interpret Late Middle Palaeolithic Chrono-Cultural Variability in Atlantic Europe 433(March):102–15.  https://doi.org/10.1016/j.quaint.2016.02.063 Google Scholar
  43. Guibert P, Lahaye C, Bechtel F (2009) The importance of U-series disequilibrium of sediments in luminescence dating: a case study at the Roc de Marsal Cave (Dordogne, France). Radiat Meas 44:223–31Google Scholar
  44. Hagen-Zanker A (2016) A computational framework for generalized moving windows and it sapplication to landscape pattern analysis. International. J Appl Earth Observ Geoinform 44:205–16. Elsevier B.V.  https://doi.org/10.1016/j.jag.2015.09.010 Google Scholar
  45. Henry DO, Hietala HJ, Rosen AM, Demidenko YE, Usik VI, Armagan TL (2004) Human behavioral organization in the Middle Paleolithic: were Neanderthals different? Am Archaeol 106(1): 17–31Google Scholar
  46. Henry D (2012) The palimpsest problem, hearth pattern analysis, and Middle Paleolithic site structure. Quatern Int 247(1):246–66. Elsevier Ltd; INQUA:  https://doi.org/10.1016/j.quaint.2010.10.013 Google Scholar
  47. Hodgkins J, Marean CW, Turq A, Sandgathe D, McPherron SJP, Dibble H (2016) Climate-mediated Shifts in Neandertal Subsistence Behaviors at Pech de l’azé IV and Roc de Marsal (Dordogne Valley, France). J Hum Evol 96(July):1–18.  https://doi.org/10.1016/j.jhevol.2016.03.009 Google Scholar
  48. Holdaway S, Wandsnider L (2008) Time in archaeology: time perspectivism revisited. University of Utah Press, Salt Lake CityGoogle Scholar
  49. Isserman AM (1977) The location quotient approach to estimating regional economic impacts. J Am Plan Assoc 43(1):33–41.  https://doi.org/10.1080/01944367708977758 Google Scholar
  50. Kroll EM, Douglas Price T (1991) The interpretation of archaeological spatial patterning. Springer, New YorkGoogle Scholar
  51. Leroi-Gourhan A (1984) Pincevent: campement magdalenien de chasseurs de rennes Guides archaeologiques de la France. Ministere de La Culture Direction Du Patrimoine Sous-Directon de L’archeologie, ParisGoogle Scholar
  52. Lin SC, McPherron SP, Dibble HL (2015) Establishing statistical confidence in cortex ratios within and among lithic assemblages: a case study of the middle paleolithic of southwestern france. J Archaeol Sci 59 (July):89–109.  https://doi.org/10.1016/j.jas.2015.04.004 Google Scholar
  53. Lin SC, Pop CM, Dibble HL, Archer W, Desta D, Weiss M, McPherron SP (2016) A core reduction experiment finds no effect of original stone size and reduction intensity on flake debris size distribution. Am Antiq 81(03):562–75.  https://doi.org/10.1017/S0002731600004005 Google Scholar
  54. Lloyd CD (2006) Local models for spatial analysis. CRC Press, LondonGoogle Scholar
  55. Luncz LV, Proffitt T, Kulik L, Haslam M, Wittig RM (2016) Distance-decay effect in stone tool transport by wild chimpanzees. Proc R Soc B: Biol Sci 283(1845):20161607.  https://doi.org/10.1098/rspb.2016.1607 Google Scholar
  56. Machado J, Molina FJ, Hernández CM., Tarriño A, Galván B (2016) Using lithic assemblage formation to approach Middle Palaeolithic settlement dynamics: El Salt Stratigraphic Unit X (Alicante, Spain). Archaeological and Anthropological Sciences, pp 1–29.  https://doi.org/10.1007/s12520-016-0318-z
  57. Malinsky-Buller A, Hovers E, Marder O (2011) Making time: ’Living floors’, ’palimpsests’ and site formation processes - A perspective from the open-air Lower Paleolithic site of Revadim Quarry, Israel. J Anthropol Archaeol 30(2):89–101. Elsevier Inc.  https://doi.org/10.1016/j.jaa.2010.11.002 Google Scholar
  58. Mallol C, Hernández C (2016) Advances in palimpsest dissection. Quat Int 417:1–2.  https://doi.org/10.1016/j.quaint.2016.09.021 Google Scholar
  59. Marwick Ben (2017) Computational reproducibility in archaeological research: Basic principles and a case study of their implementation. J Archaeol Method Theory 24(2):424–50. Journal of Archaeological Method; Theory:  https://doi.org/10.1007/s10816-015-9272-9 Google Scholar
  60. McCoy J, Johnston K (2001) Using ArcGIS spatial analyst: GIS by ESRIGoogle Scholar
  61. McPherron SJP, Dibble HL, Goldberg P (2005) Z. Geoarchaeology 20(3):243–62.  https://doi.org/10.1002/gea.20048 Google Scholar
  62. McPherron SP (2018) Additional Statistical and Graphical Methods for Analyzing Site Formation Processes Using Artifact Orientations. PLOS One 13(1):e0190195.  https://doi.org/10.1371/journal.pone.0190195 Google Scholar
  63. Mentzer SM (2009) Bone as a fuel source: the effects of initial fragment size distribution. In: Gestion Des Combustibles Au Paleolithique et Au Mesolithique: Nouveaux Outiles, Nouvelles Interpretations. Uispp Proceedings of the Xv World Congress (Lisbon, 4–9 September 2006). Archaeopress, OxfordGoogle Scholar
  64. Merrill M, Read D (2010) A new method using graph and lattice theory to discover spatial cohesive sets of artifacts and areas of organized activity in archaeological sites. Am Antiq 75(3):419–51Google Scholar
  65. Miller JH, Page SE (2007) Complex adaptive systems: an introduction to computational models of social life, vol 27. Princeton University Press, Princeton.  https://doi.org/10.1016/S1460-1567(08)10011-3 Google Scholar
  66. Nielsen Axel E. (1991) Trampling the archaeological record: an experimental study. Am Antiq 56(3):483.  https://doi.org/10.2307/280897 Google Scholar
  67. Oron M, Goren-Inbar N (2014) Mousterian intra-site spatial patterning at quneitra, golan heights. Quatern Int 331:186–202. Elsevier Ltd; INQUA:  https://doi.org/10.1016/j.quaint.2013.04.013 Google Scholar
  68. O’Connell J, Hawkes K, Jones NB (1991) Distribution of Refuse-Producing activities at hadza residential base camps: Implications for analyses of archaeological site structure. In: The Interpretation of Archaeological Site Patterning. Springer, New York, pp 61–75Google Scholar
  69. Pettitt PB (1997) High resolution neanderthals? interpreting middle palaeolithic intrasite spatial data. World Archaeol 29(2):208–24.  https://doi.org/10.1080/00438243.1997.9980374 Google Scholar
  70. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  71. Reed D, Andrew Barr W, Mcpherron SP, Bobe R, Geraads D, Wynn JG, Alemseged Z (2015) Digital data collection in paleoanthropology. Evol Anthropol 24(6):238–49.  https://doi.org/10.1002/evan.21466 Google Scholar
  72. Reynard JP, Henshilwood CS (2018) Using Trampling Modification to Infer Occupational Intensity During the Still Bay at Blombos Cave, Southern Cape, South Africa. African Archaeological ReviewGoogle Scholar
  73. Riel-Salvatore J, Ludeke I, Negrino F, Holt B (2013) A spatial analysis of the late mousterian levels of riparo bombrini (balzi rossi, italy). Can J Archaeol 92:70–92Google Scholar
  74. Gilabert R, Xavier JM-M, Torcal RM (2016) Ground stone tools and spatial organization at the Mesolithic site of font del Ros (southeastern Pre-Pyrenees, Spain). J Archaeol Sci: Reports 5:209–24. Elsevier Ltd:  https://doi.org/10.1016/j.jasrep.2015.11.023 Google Scholar
  75. Sandgathe DM, Dibble HL, Goldberg P, McPherron SP (2011a) The Roc de Marsal Neandertal Child: A Reassessment of Its Status as a Deliberate Burial. J Hum Evol 61(3):243–53.  https://doi.org/10.1016/j.jhevol.2011.04.003 Google Scholar
  76. Sandgathe DM, Dibble HL, Goldberg P, McPherron SP, Turq A, Niven L, Hodgkins J (2011b) On the Role of Fire in Neandertal Adaptations in Western Europe: Evidence from Pech de l’azé and Roc de Marsal, France. PaleoAnthropology 2011:216–42Google Scholar
  77. Sandgathe DM, Dibble HL, McPherron SJP, Goldberg P (2018) Introduction. In: The Middle Paleolithic Site of Pech de L’Azé Iv, 1–19. Cave and Karst Systems of the World. Springer, Cham.  https://doi.org/10.1007/978-3-319-57524-7_1
  78. Sandrine C, Isabelle T-P, Brugal JP, Guibert R (2005) Taphonomic consequences of the use of bones as fuel. Experimental data and archaeological applications. In: Biosphere to Lithosphere, Proceedings of the 9th Conference of the International Council of Archaeozoology. Oxbow Books, Oxford, pp 51–62Google Scholar
  79. Schelling TC (1978) Micromotives and macrobehaviors. W. W. Norton & Company, Toronto.  https://doi.org/10.2307/2989930 Google Scholar
  80. Schiffer MB (1975) Archaeology as behavioral science. Am Anthropol 77(4):836–48.  https://doi.org/10.1525/aa.1975.77.4.02a00060 Google Scholar
  81. Shott MJ (1998) Lower paleolithic industries, time, and the meaning of assemblage variation. Time in Archaeology:46–60Google Scholar
  82. Simms SR, Heath KM (1990) Site structure of the orbit inn : an application of ethnoarchaeology. Amer Antiq 55(4):797–813Google Scholar
  83. Stern N, Bunn HT, Kroll EM, Haynes G, McBrearty S, Sept J, Willoughby PR (1993) The Structure of the Lower Pleistocene Archaeological Record: A Case Study From the Koobi Fora Formation [and Comments and Reply]. Curr Anthropol 34(3):201–25.  https://doi.org/10.1086/204164 Google Scholar
  84. Stern N (1994) The implications of time-averaging for reconstructing the land-use patterns of early tool-using hominids. J Hum Evol 27(1-3):89–105.  https://doi.org/10.1006/jhev.1994.1037 Google Scholar
  85. Toth N (1985) The oldowan reassessed: a close look at early stone artifacts. J Archaeol Sci 12(2):101–20.  https://doi.org/10.1016/0305-4403(85)90056-1 Google Scholar
  86. Turq A (1979) L’evolution Du Mousterian de Type Quina Au Roc de Marsal et En Perigord Modifications de l’équilibre Technique et Typologique. Mémoire, L’Ecole des Hautes Etudes en Sciences SocialesGoogle Scholar
  87. Turq A (1985) Le moustérien de Type Quina Du Roc de Marsal (Dordogne). Bullet Soc Préhist Franç 82 (2):46–51Google Scholar
  88. Turq A, Dibble H, Faivre J-P, Goldberg P, McPherron SJP, Sandgathe D (2008) Le Moustérien Récent Du Périgord Noir: Quoi De Neuf?. In: Jaubert J, Bordes J-G, Ortega I (eds) Les Sociétés Du Paléolithique Dans Un Grand Sud-Ouest de La France: Nouveaux Gisements, Nouveaux Résultats, Nouvelles Méthodes. Mémoire de la Société Préhistorique Française, p 48Google Scholar
  89. Vaquero M, Pastó I (2001) The definition of spatial units in middle palaeolithic sites: The Hearth-Related assemblages. J Archaeol Sci 28(11):1209–20.  https://doi.org/10.1006/jasc.2001.0656 Google Scholar
  90. Vaquero M, Alonso S, García-Catalán S, García-Hernández A, de Soler BG, Rettig D, Soto M (2012a) Temporal nature and recycling of Upper Paleolithic artifacts: The burned tools from the molí del Salt site (vimbodí i Poblet, northeastern Spain). J Archaeol Sci 39(8):2785–96. Elsevier Ltd:  https://doi.org/10.1016/j.jas.2012.04.024 Google Scholar
  91. Vaquero M, Chacón MG, García-Antón MD, de Soler BG, Martínez K, Cuartero F (2012b) Time and space in the formation of lithic assemblages: The example of Abric Romaní Level. J Quatern Int 247 (1):162–81. Elsevier Ltd; INQUA:  https://doi.org/10.1016/j.quaint.2010.12.015 Google Scholar
  92. Wandsnider L (2008) Time-Averaged Deposits and multitemporal processes in the wyoming basin, intermontane north america: a preliminary consideration of land tenure in terms of occupation frequency and integration: Time in Archaeology: Time Perspectivism Revisited, pp 61–93Google Scholar
  93. Wheatley D, Gillings M (2013) Spatial technology and archaeology: the archaeological applications of GIS. CRC Press, New YorkGoogle Scholar
  94. Yellen JE (1977) Archaeological approaches to the present : models for reconstructing the past. Academic Press, New YorkGoogle Scholar
  95. Yvorra P (2003) The management of space in a Palaeolithic rock shelter: Defining activity areas by spatial analysis. Antiquity 77(296):336–44.  https://doi.org/10.1017/S0003598X00092310 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department for Early Prehistory and Quarternary EcologyUniversity of TübingenTübingenGermany
  2. 2.Department of AnthropologyGeorge Washington UniversityWashingtonUSA
  3. 3.The Center for the Advanced Study of Human PaleobiologyThe George Washington UniversityWashingtonUSA
  4. 4.Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
  5. 5.Interdisciplinary Center for Archaeology and the Evolution of Human Behaviour, FCHSUniversidade do AlgarveFaroPortugal
  6. 6.Department of AnthropologyUniversity of PennsylvaniaPhiladelphiaUSA
  7. 7.Centre for Archaeological Science (CAS), School of Earth and Environmental SciencesUniversity of WollongongWollongongAustralia
  8. 8.Institute for Archaeological SciencesUniversity of TübingenTübingenGermany
  9. 9.Department of Archaeology and Human Evolutionary Studies ProgramSimon Fraser UniversityVancouverCanada
  10. 10.Musée National de PréhistoireLes Eyzies-de-TayacFrance
  11. 11.CNRS, University of Bordeaux, MCC, PACEA UMR 5199Musée de Sauveterre-la-LémanceFrance

Personalised recommendations