Archaeological and Anthropological Sciences

, Volume 11, Issue 9, pp 5037–5052 | Cite as

Hidden paintings, forgotten histories: a micro-stratigraphic approach to study coated rock art

  • Lucas GhecoEmail author
  • Marcos Tascon
  • Marcos Gastaldi
  • Eugenia Ahets Etcheberry
  • Soledad Pereda
  • Noemi Mastrangelo
  • Marcos Quesada
  • Fernando Marte
Original Paper


Is it possible to detect rock paintings coated by natural or anthropic concretions? In this work, a methodology to discover and characterize underlying paintings is proposed. This approach combines chemical studies by micro-Raman and SEM-EDS of micro-stratigraphic samples taken from the paintings and support rock. As a case of study, it is described the research performed in the archeological site of Oyola in the northwest of Argentina. Strong evidences of red, black, and white hidden paintings have been found. In addition, the method herein presented is thoroughly evaluated pointing out their possibilities and limitations as a tool for the understanding of the historical processes involving production and transformation of the rock art panels. To this end, the methodology was proofed to be a successful exploratory approach for painting detection, expanding its capabilities when complemented with non-invasive characterization techniques.


Rock art Archeology Raman spectroscopy Hidden paintings 



Research was founded by Consejo Nacional de Investigaciones Científicas y Técnicas, Agencia Nacional de Promoción Científica y Tecnológica (PICT 2017-2462 y PICT 2017-2589), Secretaría de Ciencia y Técnica (Universidad Nacional de Catamarca), and Instituto de Investigaciones sobre el Patrimonio Cultural (IIPC-TAREA, Universidad Nacional de San Majrtín). The authors specially thank all the research team members that participated in the field and laboratory studies.

Supplementary material

12520_2019_854_MOESM1_ESM.docx (4.2 mb)
ESM 1 (DOCX 4279 kb)


  1. Bonneau A, Pearce D, Mitchell P, Staff, R, Arthur C, Mallen L et al (2017) The earliest directly dated rock paintings from southern Africa: new AMS radiocarbon dates. Antiquity 91(356):322–333. Google Scholar
  2. Chiriu D, Ricci PC, Polcaro A, Braconi P, Lanzi D, Nadali D (2014) Raman study on calcium hydroxide used on the surface of Pompeii pottery Abstract. J Spectrosc 14:1Google Scholar
  3. De la Fuente N, Nazar DC, Pelli E (2005) Documentación y diagnóstico del arte rupestre de La Tunita, Provincia de Catamarca, República Argentina. In: de la V CO, de la C M, de A. y su D. La (eds) La Cultura de La Aguada y sus Expresiones Regionales. EUDELAR, La Rioja, pp 227–244Google Scholar
  4. Edwards HGM, Russell NC, Seaward MRD (1997) Calcium oxalate in lichen biodeterioration studied using FT-Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 53(1):99–105. Google Scholar
  5. Edwards HGM, Newton EM, Russ J (2000) Raman spectroscopic analysis of pigments and substrata in prehistoric rock art. J Mol Struct 550–551:245–256. Google Scholar
  6. Feliu M & Martínez-Brell P (2008). Evolución química de materiales pictóricos: degradación o conservación. In M. y R. Llorens, García- Heras (Ed.), Actas del VII Congreso Ibérico de Arqueometría. MadridGoogle Scholar
  7. Ferrier C, Debard É, Kervazo B, Brodard A, Guibert P, Baffier D et al (2014) Les parois chauffées de la grotte Chauvet-Pont d?Arc (Ardèche, France): caractérisation et chronologie. Paleo 25:59–78Google Scholar
  8. Ferrier C, Debard É, Kervazo B, Brodard A, Guibert P, Baffier D et al (2015) Heated walls of the cave Chauvet-Pont d’Arc heated walls of the cave Chauvet-Pont d’Arc (Ardèche, France): characterization and chronology. Paleo 25(June 2016:0–25Google Scholar
  9. Fredlund G, Sundstrom L (2007) Digital infra-red photography for recording painted rock art. Antiquity 81(313):733–742. Google Scholar
  10. García-Diez M, Hoffmann DL, Zilhão J, Heras C d l, Lasheras JA, Montes R, Pike AWG (2013) Uranium series dating reveals a long sequence of rock art at Altamira Cave (Santillana del Mar, Cantabria). J Archaeol Sci 40(11):4098–4106. Google Scholar
  11. Gastaldi M, Gheco L, Moreno E, Granizo G, Ahumada M, Egea D, Quesada M (2016) Primeros resultados de las excavaciones estratigráficas en Oyola 7 (Sierra de El Alto-Ancasti, provincia de Catamarca, Argentina). Comechingonia 20(2):73–104Google Scholar
  12. Gheco L (2012). Una historia en la pared. Hacia una visión diacrónica del arte rupestre de Oyola. Tesis de Licenciatura inédita: Universidad Nacional de Catamarca. San Fernando del Valle de CatamarcaGoogle Scholar
  13. Gheco L (2017). El laberinto de las paredes pintadas. Una historia de los abrigos con arte rupestre de Oyola, Catamarca. Tesis Doctoral inédita: Universidad Nacional de Córdoba. Córdoba, Argentina.Google Scholar
  14. Gheco L, Poliszuk A (2015) Caracterización química de pinturas rupestres prehispánicas del sitio arqueológico de Oyola mediante sem-eds, drx, ft-ir, frx y gc-ms (Catamarca, Argentina). In: Pifferetti AA, Dosztal I (eds) Arqueometría argentina, metodologías científicas aplicadas al estudio de los bienes culturales: datación, caracterización, prospección y conservación. Aspha, Buenos Aires, pp 271–284Google Scholar
  15. Gheco L & Quesada M (2012). El arte rupestre de Oyola (dpto. El Alto, Catamarca): un caso de narrativas superpuestas. Aportes científicos desde Humanidades (UNCa), 9, 228–244. Facultad de Humanidades, UNCa. San Fernando del Valle de CatamarcaGoogle Scholar
  16. Gheco LI, Quesada MN, Ybarra G, Poliszuk A & Burgos O (2013). Espacios rupestres como «obras abiertas»: una mirada a los procesos de confección y transformación de los abrigos con arte rupestre del este de Catamarca (Argentina). Revista Española de Antropología Americana, 43(2).
  17. Gheco L, Gastaldi M, Marte F, Quesada M, Tascon M, Mastrangelo N (2017) About fires and paintings: three stratigraphic insights on the history of a cave with prehispanic rock art. J Archaeol Sci Rep 15:48–58. Google Scholar
  18. Gheco L, Gastaldi M, Mastrangelo N, Quesada M, Marte F, Tascon M (2018) Entre humos, fuegos y pinturas. Una metodología para conectar historias sobre una cueva con arte rupestre del sitio de Oyola. Boletín del Museo Chileno de Arte Precolombino, In press, Catamarca, ArgentinaGoogle Scholar
  19. González AR (1998) Cultura La Aguada. Arqueología y diseños. Filmediciones Valero, Buenos AiresGoogle Scholar
  20. Gordillo I, Baldini M, Kusch F (2000) Entre objetos, rocas y cuevas: significados y relaciones entre la iconografía rupestre y mobiliar de Aguada. In: Podestá MM, de Hoyos M (eds) Arte en las Rocas. Arte Rupestre, Menhires y Piedras de Colores en Argentina. Sociedad Argentina de Antropología, Buenos Aires, pp 101–111Google Scholar
  21. Gramajo A, Martínez Moreno H (1978) Otros Aportes al Arte Rupestre del Este Catamarqueño. Antiquitas XXVI–XXVII:12–17Google Scholar
  22. Gramajo A, Martínez Moreno H (1982) Otros aportes al arte rupestre del este catamarqueño. Estudio Museo arqueológico Emilio y Duncan Wagner 3:77–88Google Scholar
  23. Green H, Gleadow A, Finch D, Hergt J, Ouzman S (2017) Mineral deposition systems at rock art sites, Kimberley, Northern Australia — field observations. J Archaeol Sci Rep 14(August:340–352. Google Scholar
  24. Harman J (2008). Using decorrelation stretch to enhance rock art images. 06-2018
  25. Hernanz A, Gavira-Vallejo JM, Ruiz-López JF (2007) Calcium oxalates and prehistoric paintings. The usefulness of these biomaterials. J Optoelectron Adv Mater 9(3):512–521Google Scholar
  26. Hernanz A, Gavira-Vallejo JM, Ruiz-López JF, Edwards HGM (2008) A comprehensive micro-Raman spectroscopic study of prehistoric rock paintings from the Sierra de las Cuerdas, Cuenca, Spain. J Raman Spectrosc 39(April:972–984. Google Scholar
  27. Hernanz A, Ruiz-López JF, Madariaga JM, Gavrilenko E, Maguregui M, De Vallejuelo SFO et al (2014) Spectroscopic characterisation of crusts interstratified with prehistoric paintings preserved in open-air rock art shelters. J Raman Spectrosc 45(11–12):1236–1243. Google Scholar
  28. Hernanz A, Iriarte M, Bueno-Ramírez P, De Balbín-Behrmann R, Gavira-Vallejo JM, Calderón-Saturio D et al (2016) Raman microscopy of prehistoric paintings in French megalithic monuments. J Raman Spectrosc 47(5):571–578. Google Scholar
  29. Hill C (1982) Origin of black deposits in caves. Bull Natl Speleol Soc 44(1):15–19Google Scholar
  30. Hoffmann DL, Pike AWG, Garcia-Diez M, Pettitt PB, Zilhao J (2016) Methods for U-series dating of CaCO3 crusts associated with Palaeolithic cave art and application to Iberian sites. Quat Geochronol 36:104–119. Google Scholar
  31. Hoffmann DL, Standish CD, García-Diez M, Pettitt PB, Milton JA, Zilhão J, Alcolea-González JJ, Cantalejo-Duarte P, Collado H, de Balbín R, Lorblanchet M, Ramos-Muñoz J, Weniger GC, Pike AWG (2018) U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art. Science 359(6378):912–915. Google Scholar
  32. Kristiansen K (2017) The nature of archaeological knowledge and its ontological turns. Nor Archaeol Rev (00, 00):1–4.
  33. Lacanette D, Mindeguia JC, Brodard A, Ferrier C, Guibert P, Leblanc JC, Malaurent P, Sirieix C (2017) Simulation of an experimental fire in an underground limestone quarry for the study of Paleolithic fires. Int J Therm Sci 120(October:1–18. Google Scholar
  34. Mahmoud HHM (2012) Morphological, chemical and mineralogical characterization of deterioration products from the tomb of Kheruef (TT192), (Luxor, Egypt). PERIODICOdi MINERALOGIA 81(1):131–143. Google Scholar
  35. Marte F, Mastrangelo N, Tascon M (2011) The art of measuring: optical microscopy applied to the measurement of transversal sections. Eadem Utraque Europa 13:257–268Google Scholar
  36. Marte F, Tascón M, Mastrangelo N (2013) The art of measuring II: challenges in measuring particles in cross-sections. Eadem Utraque Europa 14:245–254Google Scholar
  37. Mauran G, Bassel L, Ferrier C, Lacanette D, Bousquet B, Chapoulie R (2018) Variability and sampling strategy of cave wall concretion: case study of the moonmilk found in Leye Cave (Dordogne). Archaeometry, (September 61:327–341. Google Scholar
  38. Mauran G, Lebon M, Détroit F, Caron B, Nankela A, Pleurdeau D & Bahain J (2019). First in situ pXRF analyses of rock paintings in Erongo, Namibia: results, current limits, and prospects. Archaeol Anthropol Sci
  39. Medina-Alcaide MA (2015) Indicios de iluminación prehistórica en el contexto arqueológico interno de las cuevas decoradas: tipos y potencial arqueológico. In: Giraldo HC, Arranz JJG (eds) En torno al arte: el contexto arqueológico interno de las cuevas decoradas. Actas XIX International Rock art Conference (IFRAO 2015). ARKEOS, TomarGoogle Scholar
  40. Moore JD (2010) Making a huaca: memory and praxis in prehispanic far northern Peru. J Soc Archaeol 10(3):398–422. Google Scholar
  41. Pauketat TR (2001) Practice and history in archaeology: an emerging paradigm. Anthropological Theory 1(73):73–98. Google Scholar
  42. Pauketat TR, Alt SM (2005) Agency in a postmold? Physicality and the archaeology of culture-making. J Archaeol Method Theory 12(3):213–237. Google Scholar
  43. Pearce DG, Bonneau A (2018) Trouble on the dating scene. Nature Ecology and Evolution 2(6):925–926. Google Scholar
  44. Pike AWG, Hoffmann DL, Pettitt PB, García-Diez M, Zilhão J (2016) Dating Palaeolithic cave art: why U-Th is the way to go. Quat Int 432:41–49. Google Scholar
  45. Prieto B, Seaward MRD, Edwards HGM, Rivas T, Silva B (1998) An Fourier transform-Raman spectroscopic study of gypsum neoformation by lichens growing on granitic rocks. Spectrochim Acta A Mol Biomol Spectrosc 55(1):211–217. Google Scholar
  46. Quesada M, Gheco L (2015) Tiempos, cuevas y pinturas. Reflexiones sobre la policronía del arte rupestre de Oyola (Provincia de Catamarca, Argentina). Relaciones de la Sociedad Argentina de Antropología 2(XL):455–476Google Scholar
  47. Quesada Martínez E (2010) Aplicación Dstretch del software Image-J. Avance de resultados en el Arte Rupestre de la Región de Murcia. Cuadernos de Arte Rupestre 5(May 2008):14–47 06-2018
  48. Quesada M, Zuccarelli V, Gheco L, Gastaldi M, Boscatto S (2016) Paisaje y experiencia en Oyola a finales del primer milenio D.C. (Dpto. El Alto, Catamarca). Comechingonia 20(2):13–42Google Scholar
  49. Roberts A, Campbell I, Pring A, Bell G, Watchma A, Filcoff RSP et al (2015) A multidisciplinary investigation of a rock coating at Ngaut Ngaut (Devon Downs), South Australia. Aust Archaeol 80(80):32–39Google Scholar
  50. Ruiz JF, Hernanz A, Armitage RA, Rowe MW, Viñas R, Gavira-Vallejo JM, Rubio A (2012) Calcium oxalate AMS 14C dating and chronology of post-Palaeolithic rock paintings in the Iberian Peninsula. Two dates from Abrigo de los Oculados (Henarejos, Cuenca, Spain). J Archaeol Sci 39(8):2655–2667. Google Scholar
  51. Russ J, Kaluarachchi WD, Drummond L, Edwards HGM (1999) The nature of a Whewellite-rich rock crust associated with pictographs in southwestern Texas. Stud Conserv 44(2):91. Google Scholar
  52. Šebela S, Miler M, Skobe S, Torkar S, Zupančič N (2015) Characterization of black deposits in karst caves, examples from Slovenia. Facies 61(2).
  53. Segura Á (1988). El Arte Rupestre del Este de Catamarca. Las Pictografías de la Candelaria. Dpto. Ancasti, Provincia de Catamarca. Editorial universitaria. Universidad Nacional de Catamarca. ArgentinaGoogle Scholar
  54. Sørensen TF (2017) The two cultures and a world apart: archaeology and science at a new crossroads. Nor Archaeol Rev 50(2):101–115. Google Scholar
  55. Steelman KL, Rowe MW, Boutton TW, Southon JR, Merrell CL, Hill RD (2002) Stable isotope and radiocarbon analyses of a black deposit associated with pictographs at Little Lost River Cave, Idaho. J Archaeol Sci 29(10):1189–1198. Google Scholar
  56. Tascon M, Mastrangelo N, Gheco L, Gastaldi M, Quesada M, Marte F (2016) Micro-spectroscopic analysis of pigments and carbonization layers on prehispanic rock art at the Oyola’s caves, Argentina, using a stratigraphic approach. Microchem J 129:297–304. Google Scholar
  57. Tomasini EP, Basile M, Ratto N, Maier MS (2013) Evidencias Químicas De Deterioro Ambiental En Manifestaciones Rupestres: Un Caso De Estudio Del Oeste Tinogasteño (Catamarca, Argentina). Boletín del museo chileno de arte precolombino 17(1091):27–38Google Scholar
  58. Trujillo J, Falgueres C, Oosterbeek L, & Rosina P (2010). Archaeometry of rock art paintings: La Piedra De La Cuadricula (Soacha, Cundinamarca, Colombia). A contribution to the study of prehistoric art. Annali dell’Università di Ferrara, 6, 175–186Google Scholar
  59. Vandevelde S., Brochier J, Desachy B, Petit C, & Slimak (2017a). Sooted concretions: a new micro-chronological tool for high temporal resolution archaeology. Quaternary International.
  60. Vandevelde S, Brochier J, Petit C, Slimak L (2017b) Establishment of occupation chronicles in Grotte Mandrin using sooted concretions: rethinking the middle to upper Paleolithic transition gol e. J Hum Evol 112:70–78. Google Scholar
  61. Watchman AL (1991) Age and composition of oxalate-rich crusts in the Northern Territory, Australia. Stud Conserv 36(1):24. Google Scholar
  62. Zupančič N, Šebela S, Miler M (2011) Mineralogical and chemical characteristics of black coatings in Postojna Cave system. Acta Carsologica 40(2):307–317. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Investigaciones sobre el Patrimonio Cultural (IIPC-TAREA)Universidad Nacional de San MartínBuenos AiresArgentina
  2. 2.Centro de Investigaciones y Transferencia Catamarca (CONICET-UNCa)de CatamarcaArgentina
  3. 3.Instituto de Investigación e Ingeniería Ambiental (3iA)Universidad Nacional de San Martín (UNSAM)Buenos AiresArgentina
  4. 4.Instituto de Antropología, Consejo Nacional de Investigaciones Científicas y Técnicas, Museo de AntropologíaCórdobaArgentina
  5. 5.Facultad de Filosofía y LetrasUniversidad de Buenos AiresBuenos AiresArgentina
  6. 6.Instituto Nacional de Tecnología IndustrialBuenos AiresArgentina
  7. 7.Escuela de ArqueologíaUniversidad Nacional de Catamarcade CatamarcaArgentina

Personalised recommendations