Advertisement

Archaeological and Anthropological Sciences

, Volume 11, Issue 9, pp 4959–4970 | Cite as

The silver treasure of Marengo: silver provenancing and insights into late antiquity Roman and Gallo-Roman hoards

  • Ivana AngeliniEmail author
  • Caterina Canovaro
  • Marica Venturino
  • Gilberto Artioli
Original Paper

Abstract

Lead isotopic ratios were measured on silver fragments extracted from several important objects of the hoard of Marengo. The hoard, known as the “treasure of Marengo”, is one of the most important silver assemblages of late antiquity. It is dated to the second half of the 2nd century AD-first half of the 3rd century AD. The interpretation of the resulting isotopic data based on extended reference isotopic databases of lead/silver ores indicates that most of the analysed objects from Marengo form a rather homogeneus stock of silver metal having a signature affine to the mines of French Massif Central. One of the objects, a large belt with figures of divinity and heroes, was made of Iberian silver, and the Pb-Ag-Cu alloy present in the filling of the arm of a female statuette is rich in Sardinian lead. The results are discussed in terms of the known circulation of silver metal in the Roman Empire in the 1st and 2nd century AD. The lead isotope data are compared with available data on coeval Roman silver hoards (Notre Dame d’Allençon, Berthouville, Graincourt-lès-Havrincourt, Boscoreale), circulating silver denarii, and Roman lead ingots rescued from shipwrecks in the Western Mediterranean sea. The role of the Iberian and French mines in the silver production from the 1st to the first half of the 3rd century AD is discussed.

Keywords

Roman silver Hoard of Marengo Silver provenance Lead isotopes Denarii Lead ingots 

Notes

Acknowledgments

I.M. Villa is thanked for the collaboration in the MC-ICP-MS measurements. G. Cavazzini assisted in the sample preparation.

Funding information

This work was supported by the Fondazione Cassa di Risparmio di Alessandria and by Progetto di Ateneo 2013 ‘Copper metallogenesis and provenancing in the Alpine realm’ [University of Padova, CPDA138741].

References

  1. Amorós JL, Lunar R, Tavira P (1981) Jarosite: a silver bearing mineral of the gossan of Rio Tinto (Huelva) and La Union (Cartagena, Spain). Mineral Deposita 16:205–213CrossRefGoogle Scholar
  2. Anguilano L, Rehren T, Muller W, Rothenberg B (2010) The importance of lead in the silver production at Riotinto (Spain). Archéosciences (34):269–276Google Scholar
  3. Artioli G, Angelini I, Nimis P, Villa IM (2016) A lead-isotope database of copper ores from the southeastern Alps: a tool for the investigation of prehistoric copper metallurgy. J Archaeol Sci 75:27–39CrossRefGoogle Scholar
  4. Balmuth MS, Thompson CM (2000) Hacksilber: recent approaches to the study of hoards of uncoined silver. Laboratory analyses and geographical distribution. In: Kluge B, Weisser B (eds) Proceedings of the XII international numismatic congress, Berlin 1997. Staatliche Museen zu Berlin, Berlin, pp 159–169Google Scholar
  5. Baratte F (1981) Le Trésor d'Argenterie Gallo-Romaine de Notre-Dame-d'Allençon (Maine et Loire). XLe Supplément à ‘Gallia’. Éditions du Centre National de la Recherche Scientifique, ParisGoogle Scholar
  6. Baratte F, Menu M, Berthoud T, Hurtel LP, Aghion I (1985) Trois trésors d’argenterie. Recherches gallo-romaines I. Editions de la Réunion des Musées Nationaux, Paris, pp. 11–68Google Scholar
  7. Baron S, Carignan J, Laurent S, Ploquin A (2006) Medieval lead making on Mont-Lozère massif (Cévennes-France): tracing ore sources using Pb isotopes. Appl Geochem 21:241–252CrossRefGoogle Scholar
  8. Baron S, Le-Carlier C, Carignan J, Ploquin A (2009) Archaeological reconstruction of medieval lead production: implications for ancient metal provenance studies and paleopollution tracing by Pb isotopes. Appl Geochem 24:2093–2101CrossRefGoogle Scholar
  9. Baron S, Tămaş CG, Cauuet B, Munoz M (2011) Lead isotope analysis of gold-silver ores from Roşia Montană (Romania): a first step of a metal provenance study of Roman mining activity in Alburnis Maior (Roman Dacia). J Archaeol Sci 38:1090–1100CrossRefGoogle Scholar
  10. Bendinelli G (1937) Il Tesoro di Argenteria di Marengo; Fascicolo I: Dei Monumenti d'Arte Antica. V. Bona, TorinoGoogle Scholar
  11. Bertelheim M, Contreras Cortés F, Moreno Onorato MA, Murillo-Barroso M, Pernicka E (2012) The silver of the south Iberian El Argar culture: a first look at production and distribution. Trab Prehist 69:293–309CrossRefGoogle Scholar
  12. Berthoud T, Hurtel LP, Menu M (1989) Études analytiques d’objects en argent romains – bilan et perspectives (à propos du trésor de Boscoreale). In: Baratte F (ed) Argenterie romaine et byzantine. Actes de la Table Ronde, Paris 11–13 Octobre 1983. De Boccard, Paris, pp 35–50Google Scholar
  13. Boni M, Di Maio G, Frei R, Villa IM (2000) Lead isotopic evidence for a mixed provenance for Roman water pipes from Pompeii. Archaeometry 42:201–208CrossRefGoogle Scholar
  14. Brevart O, Dupré B, Allegre CJ (1982) Metallogenic provinces and the remobilization process studied by lead isotopes; lead-zinc ore deposits from the southern massif central, France. Econ Geol 77:564–575CrossRefGoogle Scholar
  15. Burnett A (1987) Coinage in the Roman world. Seaby, LondonGoogle Scholar
  16. Butcher K, Ponting M (2005) The Roman denarius under the Julio-Claudian emperors: mints, metallurgy and technology. Oxf J Archaeol 24:163–197CrossRefGoogle Scholar
  17. Cauuet B (2013) Les ressources métallifères du Massif Central à l’age du Fer. In: Verger S, Pernet L (eds.) Une Odyssée gauloise. Parures de femmes à l'origine des premiers échanges entre la Grèce et la Gaule. Errance, pp. 86–93Google Scholar
  18. Craddock PT, Freestone IC, Gale NH, Meeks N, Rothenberg B, Tite MS (1992) The investigation of a small heap of silver smelting debris from Rio Tinto, Huelva, Spain. In: Craddock PT, Hughes MJ (eds.), Furnaces and smelting Technology in Antiquity.Published by Department of Scientific Research (originally published in 1985). British museum occasional paper 48, London, pp. 199–218Google Scholar
  19. Curti E (1987) Lead and oxygen isotope evidence for the origin of the Monte Rosa gold lode deposits (Western Alps, Italy): a comparison with archean lode deposits. Econ Geol 82:2115–2140CrossRefGoogle Scholar
  20. Domergue C (1990) Les mines de la Péninsule Ibérique dans l'antiquité romaine. Collections de l'École Française de Rome. Vol. 127. École Française de Rome, RomeGoogle Scholar
  21. Domergue C, Leroy M (2000) L'état de la recherche sur les mines et les métallurgies en Gaule, de l'époque gauloise au haut Moyen Âge. Gallia 57:3–10CrossRefGoogle Scholar
  22. Domergue C, Serneels V, Cauuet B, Pailler JM, Orzechowski S (2006) Mines et métallurgies en Gaule à la fin de l’Âge du Fer et à l’époque romaine. In: Paunier D (ed.) Celtes et Gaulois, l’Archéologie face à l’Histoire, 5: la romanisation et la question de l’héritage celtique. Actes de la table ronde de Lausanne, 17–18 juin 2005. Glux-en-Glenne, Bibracte, Centre Archéologique Européen, pp. 131–162Google Scholar
  23. Durali-Mueller S, Brey GP, Wigg-Wolf D, Lahaye Y (2007) Roman lead mining in Germany: its origin and development through time deduced from lead isotope provenance studies. J Archaeol Sci 34:1555–1567CrossRefGoogle Scholar
  24. Dutrizac JE, Jambor JL, O'reilly JB (1983) Man's first use of jarosite: the pre-Roman mining-metallurgical operations at Rio Tinto. Spain Can Min Metallurgical Bull 76:78–82Google Scholar
  25. Guénette-Beck B, Meisser N, Curdy P (2009) New insights into the ancient silver production of the Wallis area, Switzerland. Archaeol Anthropol Sci 1:215–229CrossRefGoogle Scholar
  26. Guerra MF (1998) Analysis of archaeological metals. The place of XRF and PIXE in the determination of technology and provenance. X-Ray Spectrom 27:73–80CrossRefGoogle Scholar
  27. Guerra MF, Tissot I (2013) The role of nuclear microprobes in the study of technology, provenance and corrosion of cultural heritage: the case of gold and silver items. Nucl Instrum Methods Phys Res B 306:227–231CrossRefGoogle Scholar
  28. Hirt AM (2010) Imperial mines and quarries in the Roman world: organizational aspects 27 BC-AD 235. Oxford University Press, OxfordCrossRefGoogle Scholar
  29. Horwitz EP, Chiarizia R, Dietz ML (1992) A novel strontium selective extraction chromatographic resin. Solv Extr Ion Exch 10:313–336CrossRefGoogle Scholar
  30. Klein S, Von Kaenel HM, Lahaye Y, Brey GP (2012) The early Roman imperial AES coinage III: chemical and isotopic characterization of Augustan copper coins from the mint of Lyons/Lugdunum. Schweizerische Numismatische Rundschau 91:63–110Google Scholar
  31. Lapatin K (ed) (2014) The Berthouville silver treasure and Roman luxury. Getty Publication, Los AngelesGoogle Scholar
  32. Le Guen M, Orgeval JJ, Lancelot J (1991) Lead isotope behaviour in a polyphased Pb-Zn ore deposit: les Malines (Cévennes, France). Mineral Deposita 26:180–188CrossRefGoogle Scholar
  33. Linke R, Schreiner M, Demortier G, Alram M (2003) Determination of the provenance of medieval silver coins: potential and limitations of X-ray analysis using photons, electrons or protons. X-Ray Spectrom 32:373–380CrossRefGoogle Scholar
  34. Marcoux E (1997) Lead isotope systematics of the giant massive sulphide deposits in the Iberian Pyrite Belt. Mineral Deposita 33:45–58CrossRefGoogle Scholar
  35. Micheletto E, Pantò G (2013) Tesoro di Marengo. Soprintendenza per i Beni Archeologici del Piemonte e del Museo Antichità Egizie, TorinoGoogle Scholar
  36. Micheletto E, Venturino M (eds) (2017) Gli argenti di Marengo. Il contesto e i materiali. Archeologia Piemonte 6, AlessandriaGoogle Scholar
  37. Montero-Ruiz I, Rafel N, Hunt M, Murillo Barroso M, Rovira MC, Armada XL, Graells R (2010) Pre-roman mining activities in the El molar-Bellmunt-Falset district (Tarragonia, Spain): indirect proofs based on lead isotopes analysis. In: Anreiter P et al (eds) Mining in European history and its impact on environment and human societies. Innsbruck University Press, Innsbruck, pp 115–121Google Scholar
  38. Murillo-Barroso M, Montero-Ruiz I, Rafel N, Hunt Ortiz MA, Armada XL (2016) The macro-regional scale of silver production in Iberia during the first millennium BC in the context of Mediterranean contacts. Oxf J Archaeol 35:75–100CrossRefGoogle Scholar
  39. Nimis P, Omenetto P, Giunti I, Artioli G, Angelini I (2012) Lead isotope systematics in hydrothermal sulphide deposits from the central-eastern Southalpine (northern Italy). Eur J Min 24:23–37CrossRefGoogle Scholar
  40. Orejas Saco del Valle A, Montero Ruiz I, Álvarez-González Y, López-González L, López-Marcos M, Rodríguez-Casanova I (2015) Roman Republic coins in North-Western Hispania. Findings from Castromaior: a contextual, numismatic and analytic approach. Madrider Mitteilungen 56:232–257Google Scholar
  41. Patterson CC (1972) Silver stocks and losses in ancient and medieval times. Econ Hist Rev 25:205–235CrossRefGoogle Scholar
  42. Pettinau B (1991) L’argento. In: Pirzio Biroli Stefanelli L (ed.) L’argento dei romani – Vasellame da tavola e d’apparato, L’Erma di Bretschneider, Roma, pp. 3–35Google Scholar
  43. Pettke T, Frei R (1996) Isotope systematics in vein gold from brusson, Val d'Ayas (NW Italy). 1. Pb/Pb evidence for a Piemonte metaophiolite au source. Chem Geol 127:111–124CrossRefGoogle Scholar
  44. Ponting M, Evans JA, Pashley V (2003) Fingerprinting of Roman mint using laser-ablation MC-ICP-MS lead isotope analysis. Archaeometry 45:591–597CrossRefGoogle Scholar
  45. Rehkämper M, Mezger K (2000) Investigation of matrix effects for Pb isotope ratio measurements by multiple collector ICP-MS: verification and application of optimized analytical protocols. J Anal At Spectrom 15:1451–1460CrossRefGoogle Scholar
  46. Rizzi P (2017) Il Tesoro di Marengo. Metallografia, corrosione, dorature, composizione. In: Micheletto E, Venturino M (eds) Gli argenti di Marengo. Il contesto e i materiali. Archeologia Piemonte 6, Alessandria, pp 173–194Google Scholar
  47. Rodrigues M, Schreiner M, Melcher M, Guerra MF, Salomon J, Radtke M, Alram M, Schindel N (2011) Characterization of the silver coins of the hoard of Beçin by X-ray based methods. Nucl Instrum Methods Phys Res B 269:3041–3045CrossRefGoogle Scholar
  48. Ronchetta D (1983) Il tesoro di Marengo. Edizioni dell'Orso, TorinoGoogle Scholar
  49. Santos Zalduegui JF, García de Madinabeitia S, Gil Ibarguchi JI, Palero F (2004) A lead isotope database: the Los Pedroches–Alcudia area (Spain); implications for archaeometallurgical connections across southwestern and southeastern Iberia. Archaeometry 46:625–634CrossRefGoogle Scholar
  50. Sena Chiesa G (1998) Un pezzo eccezionale del Tesoro di Marengo: il ritratto di Lucio Vero. Archeologia in Piemonte II:359–368Google Scholar
  51. Skaggs S, Norman N, Garrison E, Coleman D, Bouhlel S (2012) Local mining or lead importation in the Roman province of Africa Proconsularis? Lead isotope analysis of curse tablets from Roman Chartage, Tunisia. J Archaeol Sci 39:970–983CrossRefGoogle Scholar
  52. Stos-Gale ZA (2001) The impact of the natural sciences on studies of hacksilber and early silver coinage. In: Balmuth MS (ed) Hacksilber to coinage: new insights into the monetary history of the near east and Greece, numismatic studies N. 24. The American Numismatic Society, New York, pp 53–76Google Scholar
  53. Stos ZA (2009) In: Shortland AJ, Freestone IC, Rehren T (eds) From mine to microscope – Advances in the study of ancient technologyAcross the wine dark seas. Sailor tinkers and royal cargoes in the late bronze age eastern Mediterranean. Oxbow Books, Oxford, pp 163–180Google Scholar
  54. Tornos F (2006) Environment of formation and styles of volcanogenic massive sulfides: the Iberian Pyrite Belt. Ore Geol Rev 28:259–307CrossRefGoogle Scholar
  55. Trincherini P, Barbero P, Quarati P, Domergue C, Long L (2001) Where do the lead ingots of the saint-maries-de-la-Mer come from? Archaeology compared with physics. Archaeometry 43:393–406CrossRefGoogle Scholar
  56. Trincherini PR, Domergue C, Manteca I, Nesta A, Quarati P (2010) The identification of lead ingots from the Roman mines of Cartagena (Murcia, Spain): the role of lead isotope analysis. arXiv preprint arXiv:1002.3557Google Scholar
  57. Velasco F, Pesquera A, Herrero JM (1996) Lead isotope study of Zn-Pb ore deposits associated with the Basque-Cantabrian basin and Paleozoic basement, northern Spain. Mineral Deposita 31:84–92CrossRefGoogle Scholar
  58. Venturino Gambari M, Ballerino A (2013) Il tesoro di Marengo. Storie, misteri, ricerche e prospettive. Atti del Convegno. Alessandria 20 Marzo 2010. Soprintendenza per i Beni Archeologici del Piemonte e del Museo di Antichità Egizie, Biblioteca della Società di Storia Arte e Archeologia, Accademia degli Immobili, AlessandriaGoogle Scholar
  59. Villa IM (2009) Lead isotopic measurements in archeological objects. Archaeol Anthropol Sci 1:149–153CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento dei Beni CulturaliUniversità degli Studi di PadovaPadovaItaly
  2. 2.INSTMConsorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali50121 FlorenceItaly
  3. 3.Dipartimento di GeoscienzeUniversità degli Studi di PadovaPadovaItaly
  4. 4.Soprintendenze archeologia belle arti e paesaggio per le province di Alessandria, Asti e CuneoTorinoItaly

Personalised recommendations