Neanderthal plant use and pyrotechnology: phytolith analysis from Roc de Marsal, France

  • Kristen WrothEmail author
  • Dan Cabanes
  • John M. Marston
  • Vera Aldeias
  • Dennis Sandgathe
  • Alain Turq
  • Paul Goldberg
  • Harold L. Dibble
Original Paper


The plant component of Neanderthal subsistence and technology is not well documented, partially due to the preservation constraints of macrobotanical components. Phytoliths, however, are preserved even when other plant remains have decayed and so provide evidence for Neanderthal plant use and the environmental context of archaeological sites. Phytolith assemblages from Roc de Marsal, a Middle Paleolithic cave site in SW France, provide new insight into the relationship between Neanderthals and plant resources. Ninety-seven samples from all archaeological units and 18 control samples are analyzed. Phytoliths from the wood and bark of dicotyledonous plants are the most prevalent, but there is also a significant proportion of grass phytoliths in many samples. Phytolith densities are much greater in earlier layers, which is likely related to the presence of combustion features in those layers. These phytoliths indicate a warmer, wetter climate, whereas phytoliths from upper layers indicate a cooler, drier environment. Phytoliths recovered from combustion features indicate that wood was the primary plant fuel source, while grasses may have been used as surface preparations.


Phytoliths France Middle Paleolithic Neanderthals Pyrotechnology 



The research at Roc de Marsal had the financial support of the US National Science Foundation (grants 0917739, 0650198, and 0551927), the Leakey Foundation, the University of Pennsylvania Research Foundation, and the Service Régional de l’Archéologie and the Conseil Général de la Dordogne. The phytolith sampling program at Roc de Marsal was carried out with the support of the Boston University Graduate Research Abroad Fellowship. We would like to thank the original Roc de Marsal team for their continued interest in the site and invaluable insight into these interpretations, and the members of the Environmental Archaeology Laboratory at Boston University for their support and commentary throughout the process. Finally, we would like to acknowledge the important contributions that Harold Dibble, who sadly passed away in June 2018, made to this paper and to Paleolithic research in general.

Supplementary material

12520_2019_793_MOESM1_ESM.xlsx (74 kb)
ESM 1 (XLSX 74 kb)
12520_2019_793_MOESM2_ESM.docx (30 kb)
ESM 2 (DOCX 29 kb)
12520_2019_793_MOESM3_ESM.docx (21 kb)
ESM 3 (DOCX 21 kb)


  1. Albert RM, Weiner S (2001) Study of phytoliths in prehistoric ash layers using a quantitative approach. In: Meunier JD, Colin F (eds) Phytoliths: applications in earth sciences and human history. A.A. Balkema Publishers, Lisse, pp 251–266Google Scholar
  2. Albert RM, Lavi O, Estroff L, Weiner S, Tsatskin A, Ronen A, Lev-Yadun S (1999) Mode of occupation of Tabun cave, Mt Carmel, Israel during the mousterian period: A study of the sediments and phytoliths. J Archaeol Sci 26(10):1249–1260CrossRefGoogle Scholar
  3. Albert RM, Weiner S, Bar-Yosef O, Meignen L (2000) Phytoliths in the middle Palaeolithic deposits of Kebara cave, Mt Carmel, Israel: study of the plant materials used for fuel and other purposes. J Archaeol Sci 27:931–947CrossRefGoogle Scholar
  4. Albert RM, Bar-Yosef O, Meignen L, Weiner S (2003) Quantitative Phytolith study of hearths from the Natufian and middle Palaeolithic layers of Hayonim cave (Galilee, Israel). J Archaeol Sci 30:461–480CrossRefGoogle Scholar
  5. Albert RM, Berna F, Goldberg P (2012) Insights on Neanderthal fire use at Kebara cave (Israel) through high resolution study of prehistoric combustion features: evidence from phytoliths and thin sections. Quat Int 247:278–293CrossRefGoogle Scholar
  6. Aldeias V, Goldberg P, Sandgathe D, Berna F, Dibble HL, McPherron SP, Turq A, Rezek Z (2012) Evidence for Neandertal use of fire at roc de Marsal (France). J Archaeol Sci 39:2414–2423CrossRefGoogle Scholar
  7. Aldeias V, Dibble HL, Sandgathe D, Goldberg P, McPherron SJP (2016) How heat alters underlying deposits and implications for archaeological fire features: a controlled experiment. J Archaeol Sci 67:64–79. CrossRefGoogle Scholar
  8. Allué E, Solé A, Burguet-Coca A (2017) Fuel exploitation among Neanderthals based on the anthracological record from Abric Romaní (Capellades, NE Spain). Quat Int 431:6–15CrossRefGoogle Scholar
  9. Antignac G (1999) Etude du matériel lithique de la couche II du Roc de Marsal, Campagne-du-Bugue, Dordogne. Mémoire de Master 2, vol 1. Université Bordeaux, Bordeaux 76 pGoogle Scholar
  10. Assassi F (1986) Recherches sédimentologiques sur la climato-chronologie du Würm ancien et l’interstade würmien en Périgord. Thèse de troisième cycle, Bordeaux I, 1983, 1 tome 202, p illGoogle Scholar
  11. Berna F, Behar A, Shahack-Gross R, Berg J, Boaretto E, Gilboa A, Sharon I, Shalev S, Shilstein S, Yahalom-Mack N, Zorn JR, Weiner S (2007) Sediments exposed to high temperatures: reconstructing pyrotechnological processes in Late Bronze and Iron Age Strata at Tel Dor (Israel). J Archaeol Sci 34(3):358–373CrossRefGoogle Scholar
  12. Bertran P, Texier J-P (1995) Fabric analysis: application to Paleolithic sites. J Archaeol Sci 22:521–535CrossRefGoogle Scholar
  13. Bertran P, Caner L, Langohr R, Lemée L, d'Errico F (2008) Continental palaeoenvironments during MIS 2 and 3 in southwestern France: the La Ferrassie rockshelter record. Quat Sci Rev 27:2048–2063CrossRefGoogle Scholar
  14. Bordes F, Lafille J (1962) Découverte d’un squelette d’enfant moustérien dans le gisement du Roc de Marsal, Commune de Campagne-du-Burge (Dordogne). Comptes Rendus l’Académie des Sci Série II 254:714–715Google Scholar
  15. Bozarth S (1992) Classification of opal phytoliths formed in selected dicotyledons native to the great plains. In: Mulholland SC, Rapp G Jr (eds) Phytolith systematics: emerging issues. Springer US, New York, pp 193–214Google Scholar
  16. Bremond L, Alexandre A, Peyron O, Guiot J (2005) Grass water stress estimated from phytoliths in West Africa. J Biogeogr 32:311–327CrossRefGoogle Scholar
  17. Brown DA (1984) Prospects and limits of a phytolith key for grasses in the Central United States. J Archaeol Sci 11:345–368CrossRefGoogle Scholar
  18. Cabanes D, Shahack-Gross R (2015) Understanding fossil phytolith preservation: the role of partial dissolution in paleoecology and archaeology. PLoS One 10:1–16CrossRefGoogle Scholar
  19. Cabanes D, Burjachs F, Expósito I, Rodríguez A, Allué E, Euba I, Vergès JM (2009) Formation processes through archaeobotanical remains: the case of the bronze age layers in El Mirador cave, Sierra de Atapuerca, Spain. Quat Int 193:160–173CrossRefGoogle Scholar
  20. Cabanes D, Mallol C, Expósito I, Baena J (2010) Phytolith evidence for hearths and beds in the late Mousterian occupations of Esquilleu cave (Cantabria, Spain). J Archaeol Sci 37:2947–2957CrossRefGoogle Scholar
  21. Cabanes D, Weiner S, Shahack-Gross R (2011) Stability of phytoliths in the archaeological record: a dissolution study of modern and fossil phytoliths. J Archaeol Sci 38:2480–2490CrossRefGoogle Scholar
  22. Cabanes D, Gadot Y, Cabanes M, Finkelstein I, Weiner S, Shahack-Gross R (2012) Human impact around settlement sites: a phytolith and mineralogical study for assessing site boundaries, phytolith preservation, and implications for spatial reconstructions using plant remains. J Archaeol Sci 39(8):2697–2705CrossRefGoogle Scholar
  23. Castel J-C, Discamps E, Soulier M-C, Sandgathe D, Dibble H, McPherron S J-P, Goldberg P, Turq A (2017) Neandertal subsistence strategies during the Quina Mousterian at Roc de Marsal (France). Quat Int 433b:140–156Google Scholar
  24. Collura L, Neumann K (2017) Wood and bark phytoliths of West African woody plants. Quat Int 434:142–159CrossRefGoogle Scholar
  25. Couchoud I (2003) Processus géologiques de formation du site moustérien du Roc de Marsal (Dordogne, France). Paleo. (15):51–68Google Scholar
  26. Delagnes A, Rendu W (2011) Shifts in Neandertal mobility, technology and subsistence strategies in western France. J Archaeol Sci 38:1771–1783CrossRefGoogle Scholar
  27. Dibble HL, Abodolahzadeh A, Aldeias V et al (2017) How did hominins adapt to ice age Europe without fire? Curr Anthropol 58:S000–S000CrossRefGoogle Scholar
  28. Dibble HL, Sandgathe D, Goldberg P, McPherron S, Aldeias V (2018) Were Western European Neandertals able to make fire? Journal of Palaeolithic Archaeology 1:54–79CrossRefGoogle Scholar
  29. Discamps E (2013) Ungulate biomass fluctuations endured by Middle and Early Upper Paleolithic societies (SW France, MIS 5–3): the contributions of modern analogs and cave hyena paleodemography. Quat Int:1–16Google Scholar
  30. Discamps E, Jaubert J, Bachellerie F (2011) Human choices and environmental constraints: deciphering the variability of large game procurement from Mousterian to Aurignacian times (MIS 5–3) in southwestern France. Quat Sci Rev 30:2755–2775CrossRefGoogle Scholar
  31. Dubost E (2007) Analyse technologique d’un assemblage moustérien: la couche IV du Roc-de-Marsal (Dordogne), mémoire de Master 2, vol 1. Université Bordeaux, Bordeaux 58 pGoogle Scholar
  32. Farmer VC (2005) Forest vegetation does recycle substantial amounts of silicon from and back to the soil solution with phytoliths as an intermediate phase, contrary to recent reports. Eur J Soil Sci 56:271–272CrossRefGoogle Scholar
  33. Fernandez Rodriguez C, Ramil Rego P, Martinez Cortizas A (1995) Characterization and depositional evolution of Hyaena (Crocuta crocuta) coprolites from La Valina cave (Northwest Spain). J Archaeol Sci 22:597–607. Galanidou N (2000) patterns in caves: foragers, horticulturists, and the use of space. J Anthropol Archaeol 19:243–275Google Scholar
  34. Galanidou N (2000) Patterns in caves: foragers, horticulturists, and the use of space. J Anthropol Archaeol 19:243–275CrossRefGoogle Scholar
  35. Goldberg P, Miller CE, Schiegl S, Ligouis B, Berna F, Conard NJ, Wadley L (2009) Bedding, hearths, and site maintenance in the Middle Stone Age of Sibudu cave, KwaZulu-Natal, South Africa. Archaeol Anthropol Sci 1:95–122CrossRefGoogle Scholar
  36. Goldberg P, Dibble H, Berna F, Sandgathe D, McPherron SJP, Turq A (2012) New evidence on Neandertal use of fire: examples from Roc de Marsal and Pech de l’Azé IV. Quat Int 247:325–340CrossRefGoogle Scholar
  37. Guérin G, Discamps E, Lahaye C, Mercier N, Guibert P, Turq A, Dibble HL, McPherron SP, Sandgathe D, Goldberg P, Jain M, Thomsen K, Patou-Mathis M, Castel JC, Soulier MC (2012) Multi-method (TL and OSL), multi-material (quartz and flint) dating of the Mousterian site of Roc de Marsal (Dordogne, France): correlating Neanderthal occupations with the climatic variability of MIS 5–3. J Archaeol Sci 39:3071–3084CrossRefGoogle Scholar
  38. Guérin G, Frouin M, Tuquoi J, Thomsen KJ, Goldberg P, Aldeias V, Lahaye C, Mercier N, Guibert P, Jain M, Sandgathe D, McPherron SJP, Turq A, Dibble HL (2017) The complementarity of luminescence dating methods illustrated on the Mousterian sequence of the Roc de Marsal: a series of reindeer-dominated, Quina Mousterian layers dated to MIS 3. Quat Int 433:102–115CrossRefGoogle Scholar
  39. Guibert P, Lahaye C, Viellevigne E (2006) Datation par thermoluminescence des niveaux B et I de la grotte de Roc de Marsal, Campagne du Bugue, Dordogne—rapport de recherche octobre 2006. University of Bordeaux, BordeauxGoogle Scholar
  40. Hardy BL (2010) Climatic variability and plant food distribution in Pleistocene Europe: implications for Neanderthal diet and subsistence. Quat Sci Rev 29:662–679CrossRefGoogle Scholar
  41. Henry DO, Hietala HJ, Rosen AM et al (2004) Human behavioral organization in the Middle Paleolithic: were Neanderthals different? Am Anthropol 106:17–31CrossRefGoogle Scholar
  42. Henry AG, Brooks AS, Piperno DR (2014) Plant foods and the dietary ecology of Neanderthals and early modern humans. J Hum Evol 69:44–54CrossRefGoogle Scholar
  43. Karkanas P, Bar-Yosef O, Goldberg P, Weiner S (2000) Diagenesis in prehistoric caves: the use of minerals that form in situ to assess the completeness of the archaeological record. J Archaeol Sci 27:915–929CrossRefGoogle Scholar
  44. Karkanas P, Rigaud J-P, Simek JF, Albert RM, Weiner S (2002) Ash bones and guano: a study of the minerals and phytoliths in the sediments of Grotte XVI, Dordogne, France. J Archaeol Sci 29:721–732CrossRefGoogle Scholar
  45. Katz O, Cabanes D, Weiner S, Maeir AM, Boaretto E, Shahack-Gross R (2010) Rapid phytolith extraction for analysis of phytolith concentrations and assemblages during an excavation: an application at Tell es-Safi/Gath, Israel. J Archaeol Sci 37:1557–1563CrossRefGoogle Scholar
  46. Laville H (1975) Climatologie et chronologie du Paléolithique en Périgord: étude sédimentologique de dépots en grottes et sous abris. In: Etudes Quaternaires, vol 4. Université de Provence, Marseille, p 422Google Scholar
  47. Laville H, Rigaud J-P, Sackett J (1980) Rock shelters of the Perigord: geological stratigraphy and archaeological succession. Academic, New YorkGoogle Scholar
  48. Lenoble A, Bertran P (2004) Fabric of Palaeolithic layers: methods and implications for site formation processes. J Archaeol Sci 31:457–469CrossRefGoogle Scholar
  49. Lev E, Kislev ME, Bar-yosef O (2005) Mousterian vegetal food in Kebara cave, Mt. Carmel. J Archaeol Sci 32:475–484CrossRefGoogle Scholar
  50. Lin SC, McPherron SP, Dibble HL (2015) Establishing statistical confidence in cortex ratios within and among lithic assemblages: a case study of the middle Paleolithic of southwestern France. J Archaeol Sci 59:89–109CrossRefGoogle Scholar
  51. Madella M, Lancelotti C (2012) Taphonomy and phytoliths: a user manual. Quat Int 275:76–83CrossRefGoogle Scholar
  52. Madella M, Jones MK, Goldberg P, Goren Y, Hovers E (2002) The exploitation of plant resources by Neanderthals in Amud cave (Israel): the evidence from phytolith studies. J Archaeol Sci 29:703–719CrossRefGoogle Scholar
  53. Madella M, Alexandre A, Ball T (2005) International code for phytolith nomenclature 1.0. Ann Bot 96:253–260CrossRefGoogle Scholar
  54. Madre-Dupouy M (1988) L’enfant du Roc de Marsal (Dordogne, France), étude analytique et comparative, Institut de Paléontologie, Thèse de Doctorat du Muséum d’Histoire Naturelle, Paris, 396 pGoogle Scholar
  55. Marquer L, Otto T, Nespoulet R, Chiotti L (2010) A new approach to study the fuel used in hearths by hunter-gatherers at the Upper Palaeolithic site of Abri Pataud (Dordogne, France). J Archaeol Sci 37(11):2735–2746CrossRefGoogle Scholar
  56. McPherron S, Dibble H, Sandgathe D et al (2017) The lithic assemblages. In: Dibble HL, McPherron SP, Goldberg P, Sandgathe D (eds) The Middle Paleolithic site of Pech de l’Azé IV. Springer, New York, pp 117–220Google Scholar
  57. Neumann K, Fahmy A, Lespez L, Ballouche A, Huysecom E (2009) The Early Holocene palaeoenvironment of Ounjougou (Mali): phytoliths in a multiproxy context. Palaeogeogr Palaeoclimatol Palaeoecol 276:87–106CrossRefGoogle Scholar
  58. Niven L, Steele TE, Rendu W, Mallye JB, McPherron SP, Soressi M, Jaubert J, Hublin JJ (2012) Neandertal mobility and large-game hunting: the exploitation of reindeer during the Quina Mousterian at chez-Pinaud Jonzac (Charente-maritime, France). J Hum Evol 63:624–635CrossRefGoogle Scholar
  59. Parr JF, Carter M (2003) Phytolith and starch analysis of sediment samples from two archaeological sites on Dauar Island, Torres Strait, northeastern Australia. Vegetation History and Archaeobotany 12:131–141CrossRefGoogle Scholar
  60. Pearsall DM (2000) Paleoethnobotany: a handbook of procedures, 2nd edn. Academic, San DiegoGoogle Scholar
  61. Pearsall DM, Piperno DR (1993) Current research in phytolith analysis: applications in archaeology and paleoecology. The University Museum of Archaeology and Anthropology. UPenn, PhiladelphiaGoogle Scholar
  62. Piperno DR (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. Altamira PressGoogle Scholar
  63. Pons A, Campy M, Guiot J (1989) The last climatic cycle in France: the diversity of records. Quat Int 3(4):49–55CrossRefGoogle Scholar
  64. Pons A, Guiot J, de Beaulieu JL, Reille M (1992) Recent contributions to the climatology of the last glacial–interglacial cycle based on French pollen sequences. Quat Sci Rev 11:439–448CrossRefGoogle Scholar
  65. Pons-Branchu E, Hamelin B, Losson B, Jaillet S, Brulhet J (2010) Speleothem evidence of warm episodes in Northeast France during marine oxygen isotope stage 3 and implications for permafrost distribution in northern Europe. Quat Res 74:246–251CrossRefGoogle Scholar
  66. Rapp GR, Mulholland SC (1992) Phytolith systematics: emerging issues. Plenum Press, New YorkCrossRefGoogle Scholar
  67. Regev L, Poduska KM, Addadi L, Weiner S, Boaretto E (2010) Distinguishing between calcites formed by different mechanisms using infrared spectrometry: archaeological applications. J Archaeol Sci 37(12):3022–3029CrossRefGoogle Scholar
  68. Richter D, Dibble H, Goldberg P, McPherron SP, Niven L, Sandgathe D, Talamo S, Turq A (2013) The Late Middle Palaeolithic in Southwest France: new TL dates for the sequence of Pech de l’Azé IV. Quat Int 294:160–167CrossRefGoogle Scholar
  69. Richter D, McPherron SP, Dibble H et al (2017) Additional chronometric data for the small flake assemblages (“Asinipodian”) from Pech de l’Azé IV (France) and a comparison with similar assemblages at the nearby site of Roc de Marsal. In: Wojtczak D, Najiar MAI, Jagher R et al (eds) Vocation préhistoire. Hommage à Jean-Marie Le Tensorer. Études et Récherches archéologiques de l’Université de Liège, Liége, pp 323–335Google Scholar
  70. Rodríguez MF (2000) Woody Plant species used during the archaic period in the southern argentine Puna. Archaeobotany of Quebrada Seca 3. J Archaeol Sci 27:341–361CrossRefGoogle Scholar
  71. Rodriguez-Cintas A, Cabanes D (2017) Phytolith and FTIR studies applied to combustion structures: the case of the Middle Paleolithic site of El Salt (Alcoy, Alicante). Quat Int 431:16–26CrossRefGoogle Scholar
  72. Sandgathe DM, Goldberg P, Dibble HL, et al (2008) Roc de Marsal (Campagne-de-Bugue, Dordogne). Rapport d’Operation pour l’Annee 2008. BordeauxGoogle Scholar
  73. Sandgathe DM, Dibble HL, Goldberg P et al (2011a) On the role of fire in Neandertal adaptations in Western Europe: evidence from Pech de l’Azé and roc de Marsal, France. PaleoAnthropology:216–242Google Scholar
  74. Sandgathe DM, Dibble HL, Goldberg P, McPherron SP (2011b) The Roc de Marsal Neandertal child: a reassessment of its status as a deliberate burial. J Hum Evol 61:243–253CrossRefGoogle Scholar
  75. Schiegl S, Goldberg P, Weiner S (1996) Ash deposits in Hayonim and Kebara caves, Israel: macroscopic, microscopic and mineralogical observations, and their archaeological implications. J Archaeol Sci 23:763–781CrossRefGoogle Scholar
  76. Shillito L (2011) Taphonomic observations of archaeological wheat phytoliths from Neolithic Ҫatalhöyük, Turkey, and the use of conjoined phytolith size as an indicator of water availability. Archaeometry 53:631–641CrossRefGoogle Scholar
  77. Solé A, Allué E, Carbonell E (2013) Hearth-related wood remains from Abric Romani layer M (Capellades, Spain). J Anthropol Res 69:535–559CrossRefGoogle Scholar
  78. Soreng RJ, Peterson PM, Romaschenko K et al (2015) A worldwide phylogenetic classification of the Poaceae (Gramineae). J Syst Evol 53:117–137CrossRefGoogle Scholar
  79. Strömberg CAE (2004) Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of North America during the Late Eocene to Early Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 207:239–275CrossRefGoogle Scholar
  80. Strömberg CA, Werdelin L, Friis EM, Saraç G (2007) The spread of grass-dominated habitats in Turkey and surrounding areas during the Cenozoic: Phytolith evidence. Palaeogeogr Palaeoclimatol Palaeoecol 250:18–49CrossRefGoogle Scholar
  81. Théry-Parisot I (2002a) Gathering of firewood during the Palaeolithic. In: Thiébault S (ed) Charcoal analysis: methodological approaches, palaeoecological results and wood uses: proceedings of the second International Meeting of Anthracology, Paris, September 2000. Archaeopress, Oxford, pp 243–249Google Scholar
  82. Théry-Parisot I (2002b) Fuel management (bone and wood) during the lower Aurignacian in the Pataud rock shelter (lower Palaeolithic, les Eyzies de Tayac, Dordogne, France). Contribution of experimentation. J Archaeol Sci 29:1415–1421CrossRefGoogle Scholar
  83. Thiébaut C (2003) L’industrie lithique de la couche III du Roc de Marsal (Dordogne): Le problème de l’attribution d’une série lithique au Moustérien à Denticulés. Paléo. (15):146Google Scholar
  84. Tsartsidou G, Lev-Yadun S, Albert R-M, Miller-Rosen A, Efstratiou N, Weiner S (2007) The phytolith archaeological record: strengths and weaknesses evaluated based on a quantitative modern reference collection from Greece. J Archaeol Sci 34(8):1262–1275CrossRefGoogle Scholar
  85. Tsartsidou G, Karkanas P, Marshall G, Kyparissi-Apostolika N (2015) Palaeoenvironmental reconstruction and flora exploitation at the Palaeolithic cave of Theopetra, Central Greece: the evidence from phytolith analysis. Archaeol Anthropol Sci 7:169–185CrossRefGoogle Scholar
  86. Turq A (1979) L’evolution du Mousterien de Type Quina au Roc de Marsal et en Perigord. Modifications de l’équilibre technique et typologique. L’Ecole des Hautes Etudes en Sciences Sociales, ParisGoogle Scholar
  87. Turq A (1980) Le Roc-de-Marsal: Campagne-du-Bugue. In: J.-Ph. Rigaud, (Dir.), informations archéologiques, circonscription d'Aquitaine. Gallia Préhistoire. 23(2):402–403, 1 figGoogle Scholar
  88. Turq A (1985) Le Moustérien de type Quina du Roc-de-Marsal (Dordogne). Bulletin de la société Préhistorique Française 82(2):46–51, 2 fig. 2 tablGoogle Scholar
  89. Turq A (1988) Le Moustérien de type Quina du Roc de Marsal: contexte stratigraphique, analyse lithologique et technologique. Documents d'Archéologie Périgourdine (A.D.R.A.P.) vol 3, p 5–30, 24 figGoogle Scholar
  90. Turq A (1989a) Le squelette de l'enfant néandertalien du Roc de Marsal: les données de fouilles. Paléo, n° 1, p. 47–54, ill,Google Scholar
  91. Turq A (1989b) Approche technologique et économique du faciès moustérien de type Quina: étude préliminaire. Bulletin de la Société Préhistorique Française 86(8):244–256 12 figCrossRefGoogle Scholar
  92. Turq A (2000) Le Paléolithique inférieur et moyen entre les vallées de la Dordogne et du Lot. Paléo (supplément 2) 456 p. illGoogle Scholar
  93. Turq A, Guibert P (2003) Roc de Marsal; commune de Campagne-du-Bugue (Dordogne). Ministère de la Culture et de la Communication. Direction Régionale des Affaires Culturelles Aquitaine. Service Régional de l'Archéologie. Bilan scientifique. Ministère de la Culture, Bordeaux, p 21Google Scholar
  94. Turq A, Dibble HL, Faivre J-Ph, Goldberg P, McPherron SP, Sandgathe D (2009) Le Moustérien du Périgord Noir: quoi de neuf? Les sociétés du Paléolithique dans un Grand Sud-Ouest de la France: nouveaux gisements, nouveaux résultats, nouvelles méthodes. (Dir. J. Jaubert, J.-G. Bordes et I. Ortega). Mémoire XLVII de la Société Préhistorique Française, pp 83–93Google Scholar
  95. Twiss PC, Suess E, Smith RM (1969) Morphological classification of grass phytoliths. Proc Soil Sci Soc Am 33:109–115CrossRefGoogle Scholar
  96. Van Andel TH, Tzedakis PC (1996) Palaeolithic landscapes of Europe and environs, 150,000–25,000 years ago: an overview. Quat Sci Rev 15:481–500CrossRefGoogle Scholar
  97. Wadley L, Sievers C, Bamford M, Goldberg P, Berna F, Miller C (2011) Middle Stone Age bedding construction and settlement patterns at Sibudu, South Africa. Science 334:1388–1391CrossRefGoogle Scholar
  98. Weyrich LS, Duchene S, Soubrier J, Arriola L, Llamas B, Breen J, Morris AG, Alt KW, Caramelli D, Dresely V, Farrell M, Farrer AG, Francken M, Gully N, Haak W, Hardy K, Harvati K, Held P, Holmes EC, Kaidonis J, Lalueza-Fox C, de la Rasilla M, Rosas A, Semal P, Soltysiak A, Townsend G, Usai D, Wahl J, Huson DH, Dobney K, Cooper A (2017) Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544:357–361CrossRefGoogle Scholar
  99. Wilding LP, Drees LR (1974) Contributions of forest opal and associated crystalline phases to fine silt clay fractions of soils. Clay Clay Miner 22(3):295–306Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ArchaeologyBoston UniversityBostonUSA
  2. 2.Department of Anthropology, Center for Human Evolutionary Studies, and Institute of Earth, Ocean, and Atmospheric StudiesRutgers, the State University of New JerseyNew BrunswickUSA
  3. 3.Department of AnthropologyBoston UniversityBostonUSA
  4. 4.Interdisciplinary Center for Archaeology and the Evolution of Human Behaviour (ICArEHB)Universidade do AlgarveFaroPortugal
  5. 5.Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
  6. 6.Department of ArchaeologySimon Fraser UniversityBurnabyCanada
  7. 7.University of Pennsylvania Museum of Archaeology and AnthropologyPhiladelphiaUSA
  8. 8.UMR-5199 PACEAUniversité de BordeauxPessac CedexFrance
  9. 9.Musée de Préhistoire de Sauveterre-la-LémanceSauveterre-la-LémanceFrance
  10. 10.Centre for Archaeological Science (CAS), School of Earth and Environmental SciencesUniversity of WollongongWollongongAustralia
  11. 11.Institut für Naturwissenschaftliche ArchäologieUniversity of TübingenTübingenGermany
  12. 12.Department of AnthropologyUniversity of PennsylvaniaPhiladelphiaUSA
  13. 13.Institute of Human Origins, School of Human Evolution and Social ChangeArizona State UniversityTempeUSA

Personalised recommendations