Archaeological and Anthropological Sciences

, Volume 11, Issue 4, pp 1621–1629 | Cite as

From talc to enstatite: archaeometric investigations on an ancient Egyptian whitish bead

  • Oliver BaehreEmail author
  • Gert Kloess
  • Dietrich Raue
  • Tom Muenster
  • Alexandra Franz
Brief Report


At archaeological excavations in the Orient region, ancient jewellery in the form of beads is found in huge amounts. Beads were such common objects, that they represent a major part of archaeological material besides potsherds. Numerous materials and colours were used through the ages due to change in fashion, religious beliefs, technique and availability of materials (Xia 2014; Lieven 2004).

In 1914, during one of Georg Steindorff’s 1 expeditions, beads of a necklace were found (Steindorff 1935). The beads belong to a hoard of grave N318 at Aniba, Lower Nubia (see Fig.  1). The tomb is dated to the eighteenth to seventeenth century BCE. After the beads were brought separately to Leipzig, they were threaded and stored at the Egyptian Museum – Georg Steindorff – of Leipzig University. The necklace (inv. no. 4471) consists of 174 beads in total: 116 red, 54 green, 3 blue and 1 whitish bead. The material of the necklace is described in the museum’s database as carnelian (red),...



We are deeply grateful to Dr. H.-J. Höbler (Institute of Mineralogy, Crystallography and Materials Science, Leipzig University) for assistance in mineralogy and microscopy. We give thanks to K.H. von Stülpnagel (Egyptian Museum – Georg Steindorff – of Leipzig University) for interdisciplinary discussions and H. Hölzig for proofreading the manuscript.


  1. Aglietti EF (1994) The effect of dry grinding on the structure of talc. Appl Clay Sci 9(2):139–147. CrossRefGoogle Scholar
  2. Armbruster T (1989) Crystal chemistry of double-ring silicates: structure of roedderite at 100 and 300 K. Eur J Min 1(5):715–718. CrossRefGoogle Scholar
  3. Artioli G, Angelini I, Nestola F (2013) New milarite/osumilite-type phase formed during ancient glazing of an Egyptian scarab. Appl Phys A Mater Sci Process 110(2):371–377. CrossRefGoogle Scholar
  4. Baehre O, Muenster T, Raue D, Kloess G (2018) Skarabäen aus Enstatit – Untersuchungen an einem Schmuckkonvolut mit altägyptischen Einlagen. In Glaser L Archäometrie und Denkmalpflege 2018. DESY-PROC-2018-01:190–193.
  5. Balek V, Subrt J, Pérez-Maqueda LA, Benes M, Bountseva IM, Beckman IN, Pérez-Rodríguez JL (2008) Thermal behavior of ground talc mineral. J Min Metall, B Metall 44(1):7–17. CrossRefGoogle Scholar
  6. Barthélemy de Saizieu B, Bouquillon A (1993) Steatite working at Mehrgarh during the Neolithic and Chalcolithic periods: quantitative distribution, characterization of material and manufacturing processes. Ann Acad Sci Fenn Series B 271(1):47–59 cited at Bar-Yosef Mayer et al (2004)Google Scholar
  7. Bar-Yosef Mayer DE, Porat N, Gal Z, Shalem D, Smithline H (2004) Steatite beads at Peqi'in. Long distance trade and pyro-technology during the Chalcolithic of the Levant. J Archaeol Sci 31(4):493–502. CrossRefGoogle Scholar
  8. Bouquillon A (2008) Glazed steatite. In Tite MS, Shortland AJ Production technology of faience and related early vitreous materials, Oxford University School of Archaeology, Oxford (Monograph) 72:23–36Google Scholar
  9. Bouquillon A, Barthélemy de Saizieu B, Duval A (1995) Glazed steatite beads from Merhgarh and Nausharo (Pakistani Balochistan). MRS Proc 352:527–538. CrossRefGoogle Scholar
  10. Damick A, Woodworth M (2015) Steatite beads from Tell Fadous-Kfarabida. A case study in early Bronze Age technology in Northern Coastal Lebanon. J Archaeol Sci Rep 3:603–614. Google Scholar
  11. El-Sharkawy MF (2000) Talc mineralization of ultramafic affinity in the Eastern Desert of Egypt. Mineral Deposita 35(4):346–363. CrossRefGoogle Scholar
  12. Ganguly J, Ghose S (1979) Aluminous orthopyroxene. Order-disorder, thermodynamic properties, and petrologic implications. Contrib Mineral Petrol 69(4):375–385. CrossRefGoogle Scholar
  13. Gasparik T (2014) Phase diagrams for geoscientists. An atlas of the Earth’s interior, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  14. Hegde K (1983) The art of the Harappan microbead. Archaeology 36(3):68–72Google Scholar
  15. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279Google Scholar
  16. Lee WE, Heuer AH (1987) On the polymorphism of enstatite. J Am Ceram Soc 70(5):349–360. CrossRefGoogle Scholar
  17. Panei L, Rinaldi G, Tosi M (2005) Investigations on ancient beads from the Sultanate of Oman (Ra's al-Hadd - Southern Oman). ArchéoSciences 29:151–155CrossRefGoogle Scholar
  18. Pickard C, Schoop UD (2013) Characterization of late chalcolithic micro-beads from Çamlibel Tarlasi, North-Central Anatolia. Archaeometry 55(1):14–32. CrossRefGoogle Scholar
  19. Pollack SS, Ruble WD (1964) X-ray identification of ordered and disordered ortho-enstatite. Am Mineral 49(7–8):983–992Google Scholar
  20. Rösch C, Hock R, Schüssler U, Yule P, Hannibal A (1997) Electron microprobe analysis and X-ray diffraction methods in archaeometry: investigations on pre-Islamic beads from the sultanate of Oman. Eur J Min 9:763–783. CrossRefGoogle Scholar
  21. Schandl ES, Gorton MP, Sharara NA (2002) The origin of major talc deposits in the Eastern Desert of Egypt. Relict fragments of a metamorphosed carbonate horizon? J Afr Earth Sci 34:259–273. CrossRefGoogle Scholar
  22. Steindorff G (1935) Aniba I, LeipzigGoogle Scholar
  23. Stephenson DA, Sclar CB, Smith JV (1966) Unit cell volumes of synthetic orthoenstatite and low clinoenstatite. Mineral Mag 35(274):838–846. Google Scholar
  24. Tite MS, Bimson M (1989) Glazed steatite: an investigation of the methods of glazing used in ancient Egypt. World Archaeol 21(1):87–100CrossRefGoogle Scholar
  25. Vidale M (1989) Early Harappan steatite, faience and paste beads in a necklace from Mehrgarh-Nausharo (Pakistan). East West 39(1):291–300Google Scholar
  26. von Lieven A (2004) Das Göttliche in der Natur erkennen. Tiere, Pflanzen und Phänomene der unbelebten Natur als Manifestationen des Göttlichen. Z ägypt Sprache u Altertkd 131:156–172. Google Scholar
  27. Xia N (2014) Ancient Egyptian beads. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Mineralogie, Kristallographie und MaterialwissenschaftUniversität LeipzigLeipzigGermany
  2. 2.Ägyptologisches InstitutUniversität LeipzigLeipzigGermany
  3. 3.Abteilung Struktur und Dynamik von EnergiematerialienHelmholtz-Zentrum Berlin für Materialien und EnergieBerlinGermany

Personalised recommendations