Advertisement

Agricultural production in the 1st millennium BCE in Northwest Iberia: results of carbon isotope analysis

  • Adrián Mora-González
  • Andrés Teira-Brión
  • Arsenio Granados-Torres
  • Francisco Contreras-Cortés
  • Antonio Delgado-Huertas
Original Paper

Abstract

This work presents the first results of carbon isotope (δ13C) analysis of seeds (Triticum dicoccum, Triticum aestivum/durum, Triticum cf. spelta and Hordeum vulgare L.) from archaeological contexts from the settlement sites of A Fontela and Castrovite in Northwest Iberia, which cover a chronological range between 1050 cal BC and 25 cal AD. In addition, 142 present-day wheat seeds from 16 plots cultivated in 2014 and 2015 across this region were analysed. The results obtained for A Fontela and Castrovite were − 23.6‰ (between − 25.3 and − 21.4) and − 24.0‰ (between − 26.6 and − 21.8), respectively. Taking into account changes in the isotope composition of atmospheric carbon (δ13Catm), the Δ13C values were 17.5‰ (A Fontela) and 18.0‰ (Castrovite). In Castrovite, differences between storage facilities were detected, which could be related to the exploitation of different areas for cultivation, possibly indicating a family-based organization of agricultural production.

Keywords

1st millennium BCE NW Iberia Carbon isotopes Cereals Agriculture 

Notes

Acknowledgments

This work was supported by a FPU grant at the Spanish Ministerio de Educación, Cultura y Deporte (AP2012-1353) and part of this research is included in the PhD Thesis of Adrián Mora-González “Irrigación y secano en el Mediterráneo Occidental (III-I milenio A.N.E.): un estudio isotópico”. This research has been conducted within the framework of the HAR2015-66009-P “Arqueología y Química. Reconstruyendo los hábitos alimenticios en la cultura de El Argar” funded by the Spanish Ministerio de Economía y Competitividad, the Project RNM-8011 and the research groups RNM309 and HUM274 (Junta de Andalucía). The archaeobotanical studies of A Fontela and Castrovite were undertaken in the project “Paleoenvironment and Paleoeconomics during the 1st millennium BC”. We also thank Xulio Carballo Arceo, Josefa Rey Castiñeira and Cliodhna Ni Lionain for valuable comments on a draft of the text, leading to measurable improvements.

References

  1. Aguilera M, Espinar C, Ferrio Díaz JP, Pérez G, Voltas J (2009) A map of autumn precipitation for the third millennium BP in the Eastern Iberian Peninsula from charcoal carbon isotopes. J Geochem Explor 102:157–165CrossRefGoogle Scholar
  2. Aguilera M, Ferrio Díaz JP, Pérez G, Araus JL, Voltas J (2012) Holocene changes in precipitation seasonality in the western Mediterranean Basin: a multi-species approach using δ13C of archaeological remains. J Quat Sci 27(2):192–202.  https://doi.org/10.1002/jqs.1533 CrossRefGoogle Scholar
  3. Araus JL, Buxó R, Febrero A, Camalich MD, Martin D, Molina F, Rodríguez-Ariza MO, Voltas J (1997) Identification of ancient irrigation practise based on the carbon isotope discrimination of plant seeds: a case study from South-East Iberian Peninsula. JAS 24:729–740Google Scholar
  4. Ayán Vila XM (2008) A round Iron Age: the circular house in the hillforts of the northwestern Iberian peninsula e-Keltoi. Journal of Interdisciplinary Celtic Studies 6:903–1003Google Scholar
  5. Bernárdez P, González-Álvarez R, Francés G, Prego R, Bárcena MA, Romero OE (2008) Late Holocene history of the rainfall in the NW Iberian peninsula—evidence from a marine record. J Mar Syst 72:366–382CrossRefGoogle Scholar
  6. Bettencourt AMDS (2013) The prehistory of the northwestern Portugal, vol Arkeos 2. Territórios da Pré-História em Portugal. CEIPHAR/CITCEM, Braga/TomarGoogle Scholar
  7. Bladé I, Castro Díez Y (2010) Tendencias atmosféricas en la Península Ibérica durante el periodo instrumental en el contexto de la variabilidad natural. In: Pérez FF, Boscolo R (eds) Clima en España: pasado, presente y futuro. pp 25–42Google Scholar
  8. Bogaard A, Fraser R, Heaton THE, Wallace M, Vaiglova P, Charles M, Jones G, Evershed RP, Styring AK, Andersen NH, Arbogast RM, Bartosiewicz L, Gardeisen A, Kanstrup M, Maier U, Marinova E, Ninov L, Schäfer M, Stephan E (2013) Crop manuring and intensive land management by Europe’s first farmers. Proc Natl Acad Sci 110(31):12589–12594CrossRefGoogle Scholar
  9. Bogaard A, Hodgson J, Nitsch E, Jones G, Styring A, Diffey C, Pouncett J, Herbig C, Charles M, Ertuğ F, Tugay O, Filipovic D, Fraser R (2016) Combining functional weed ecology and crop stable isotope ratios to identify cultivation intensity: a comparison of cereal production regimes in Haute Provence, France and Asturias, Spain. Veg Hist Archaeobotany 25(1):57–73.  https://doi.org/10.1007/s00334-015-0524-0 CrossRefGoogle Scholar
  10. Buxó R (1997) Arqueología de las Plantas. Crítica, BarcelonaGoogle Scholar
  11. Caracuta V, Barzilai O, Khalaily H, Milevski I, Paz Y, Vardi J, Regev L, Boaretto E (2015) The onset of faba bean farming in the Southern Levant. Sci Rep 5:14370.  https://doi.org/10.1038/srep14370 http://www.nature.com/articles/srep14370#supplementary-information CrossRefGoogle Scholar
  12. Carballo Arceo LX (1990) Los castros de la cuenca media del río Ulla y sus relaciones con el medio físico. Trab Prehist 47:161–199CrossRefGoogle Scholar
  13. Carballo Arceo LX (1998) A agricultura en Castrovite (Orazo, A Estrada) durante a Idade do Ferro. A Estrada: Miscelánea histórica e cultural 1:9–26Google Scholar
  14. Desprat S, Sánchez Goñi MF, Loutre M-F (2003) Revealing climatic variability of the last three millennia in northwestern Iberia using pollen influx data. Earth Planet Sci Lett 213(1):63–78CrossRefGoogle Scholar
  15. Diz P, Francés G, Pelejero C, Grimalt JO, Vilas F (2002) The last 3000 years in the Ría de Vigo (NW Iberian Margin): climatic and hydrographic signals. The Holocene 12(4):459–468CrossRefGoogle Scholar
  16. Fábregas Valcarce R, Ruiz-Gálvez Priego M (1997) El noroeste de la Península Ibérica en el IIIer y II° Milenios: propuestas para una síntesis. Sagvntvm Papeles del Laboratorio de Arqueología de Valencia 30:191–216Google Scholar
  17. Farquhar GD, MH O’L, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137CrossRefGoogle Scholar
  18. Farquhar GD, Richards R (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct Plant Biol 11:539–552Google Scholar
  19. Ferrio Díaz JP, Araus JL, Buxó R, Voltas J, Bort J (2005) Water management practices and climate in ancient agriculture: inference from the stable isotope composition of archaeobotanical remains. Veg Hist Archaeobotany 14:510–517CrossRefGoogle Scholar
  20. Fiorentino G, Caracuta V, Casiello G, Longobardi F, Sacco A (2012) Studying ancient crop provenance: implications from δ13C and δ15N values of charred barley in a Middle Bronze Age Silo at Ebla (NW Syria). Rapid Commun Mass Spectrom 26:327–335CrossRefGoogle Scholar
  21. Fiorentino G, Ferrio JP, Bogaard A, Araus JL, Riehl S (2015) Stable isotopes in archaeobotanical research. Veg Hist Archaeobotany 24(1):215–227.  https://doi.org/10.1007/s00334-014-0492-9 CrossRefGoogle Scholar
  22. Fraser RA, Bogaard A, Heaton T, Charles M, Jones G, Christensen BT, Halstead P, Merbach I, Poulton PR, Sparkes D, Styring AK (2011) Manuring and stable nitrogen isotope ratios in cereals and pulses: towards a new archaeobotanical approach to the inference of land use and dietary practices. JAS 38(10):2790–2804.  https://doi.org/10.1016/j.jas.2011.06.024 CrossRefGoogle Scholar
  23. Gebhardt A (1992) Micromorphological analysis of soil structure modifications caused by different cultivation implements. In: Anderson PC (ed) Préhistoirede l'agriculture. Nouvelles approches expérimentales et ethnografiques, CRA, París, pp 373–382Google Scholar
  24. González-Ruibal A (2006a) Galaicos. Poder y comunidad en el Noroeste de la Península Ibérica (1200 a.C-50 d.C.), vol Brigantium 18/19. Museu Arqueolóxico e Histórico da Coruña, A CoruñaGoogle Scholar
  25. González-Ruibal A (2006b) House societies vs. kinship-based societies: an archaeological case from Iron Age Europe. JAnthArch 25(1):144–173Google Scholar
  26. González-Ruibal A (2012) The politics of identity: ethnicity and the economy of power in Iron Age Northwest Iberia. In: Cifani G, Stoddart S (eds) Landscape, Ethnicity and Identity in the Archaic Mediterranean Area. Oxbow Books, Oxford, pp 245–266Google Scholar
  27. González García FJ, Parcero-Oubiña C, Ayán Vila X (2011) Iron Age Societies against the State: an Account of the Emergence of the Iron Age in North-western Iberia. In: Armada Pita XL, Moore T (eds) Atlantic Europe in the first millennium BC: crossing the divide. Oxford University Press, Oxford, pp 285–301Google Scholar
  28. Gonzalez Samperiz P, Valero Garces B, Moreno A, Morellon M, Navas A (2008) Vegetation changes and hydrological fluctuations in the Central Ebro Basin (NE Spain) since the Late Glacial period: saline lake records. Palaeogeogr Palaeoclimatol Palaeoecol 259:157–181CrossRefGoogle Scholar
  29. Hare VJ, Loftus E, Jeffrey A, Ramsey CB (2018) Atmospheric CO2 effect on stable carbon isotope composition of terrestrial fossil archives. Nat Commun 9(1):252.  https://doi.org/10.1038/s41467-017-02691-x
  30. Heaton THE, Jones G, Halstead P, Tsipropoulus T (2009) Variations in the 13C/12C ratios of modern wheat grain, and implications for interpreting data from Bronze Age Assiros Toumba, Greece. JAS 36:2224–2233Google Scholar
  31. Hedges JI, Stern JH (1984) Carbon and nitrogen determinations of carbonate-containing solids. Limnol Oceanogr 29:657–663CrossRefGoogle Scholar
  32. Hillman GC (1981) Reconstructing crop husbandry practices from charred remains crops. In: Mercer R (ed) Farming practice in British prehistory. Edinburgh University Press, EdimburgoGoogle Scholar
  33. Hillman GC (1984) Interpretation of archaeological plants remains: the application of ethnographic models from Turkey. In: Van Zeist W, Casparie WA (eds) Plants and ancient man. A. A. Balkema, Rotterdam, pp 1–43Google Scholar
  34. Indermuhle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398(6723):121–126CrossRefGoogle Scholar
  35. Jacomet S (2006) Identification of cereal remains from archaeological sites. 2nd edition edn. Archaeobotany Lab. IPAS, Basel University, BaselGoogle Scholar
  36. Jalut G, Amat AE, Bonnet L, Gauquelin T, Fontugne M (2000) Holocene climatic changes in the Western Mediterranean from south-east France to south-east Spain. Palaeogeagraphy, Palaeoclimatology, Palaeoecology 160:255–290CrossRefGoogle Scholar
  37. Jalut G, Esteban Amat A, SRi M, Fontugne M, Mook R, Bonnet L, Gauquelin T (1997) Holocene climatic changes in the western Mediterranean: installation of the Mediterranean climate. C R Acad Sci Ser IIA Earth Planet Sci 325(5):327–334.  https://doi.org/10.1016/S1251-8050(97)81380-8 Google Scholar
  38. Jones GEM (1984) Interpretation of archaeological plant remains: ethnographic models from Greece. In: Van Zeist W, Casparie WA (eds) Plant and ancient man. Studies in palaeoethnobotany. A. A. Balkema, Rotterdam, pp 43–61Google Scholar
  39. Kaal J, Carrión Marco Y, Asouti E, Martín-Seijo M, Martínez-Cortizas A, Costa Casáis M, Criado Boado F (2011) Long-term deforestation in NW Spain: linking the Holocene fire history to vegetation change and human activities. Quat Sci Rev 30(1–2):161–175.  https://doi.org/10.1016/j.quascirev.2010.10.006 CrossRefGoogle Scholar
  40. Keeling CD, Mook WG, Tans PP (1979) Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature 277:121–123.  https://doi.org/10.1038/277121a0 CrossRefGoogle Scholar
  41. Leuenberger M, Siegenthaler U, Langway C (1992) Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core. Nature 357(6378):488–490CrossRefGoogle Scholar
  42. Marino BD, DeNiro MJ (1987) Isotopic analysis of archaeobotanicals to reconstruc past climates: effects of activities associated with food preparation on carbon, hydrogen and oxygen isotope ratios of plant cellulose. JAS 14:537–548CrossRefGoogle Scholar
  43. Martín-Puertas C, Valero-Garcés BL, Brauer A, Mata MP, Delgado-Huertas A, Dulski P (2009) The Iberian–Roman humid period (2600–1600 cal yr BP) in the Zoñar Lake varve record (Andalucía, southern Spain). Quat Res 71(2):108–120.  https://doi.org/10.1016/j.yqres.2008.10.004 CrossRefGoogle Scholar
  44. Martín-Puertas C, Valero-Garcés BL, Pilar Mata M, González-Sampériz P, Bao R, Moreno A, Stefanova V (2008) Arid and humid phases in southern Spain during the last 4000 years: the Zoñar Lake record, Córdoba. The Holocene 18(6):907–921.  https://doi.org/10.1177/0959683608093533 CrossRefGoogle Scholar
  45. Martín-Seijo M, Tereso JP, Bettencourt AMS, Sampaio HA, Abad Vidal E, Vidal Caeiro L (2017) Socio-ecology of Early and Middle Bronze Age communities in the northwest Atlantic region of Iberia: Wood resources procurement and forest management. Quat Int 437(B):90–101.  https://doi.org/10.1016/j.quaint.2015.08.026 CrossRefGoogle Scholar
  46. Martín-Seijo M, Carballo Arceo LX (2010) Le travail du bois et les pratiques d’élagage à l’Âge du Fer: le site de Castrovite (Galice-Espagne). In: Delhon C, Théry-Parisot I, Tiébault S (eds) Des hommes et des plantes. Exploitation du milieu et gestion des ressources végétales de la préhistoire à nos jours. XXXe rencontres internationales d’archéologie et d’histoire d’Antibes edn. Éditions APDCA, Antibes, pp 343–356Google Scholar
  47. Martínez-Cortizas A, Pontevedra-Pombal X, García-Rodeja E, Nóvoa-Muñoz JC, Shotyk W (1999) Mercury in a Spanish peat bog: archive of climate change and atmospheric metal deposition. Science 284(5416):939–942.  https://doi.org/10.1126/science.284.5416.939 CrossRefGoogle Scholar
  48. Martínez-Cortizas A, Costa Casais M, López Sáez JA (2009a) Environmental change in NW Iberia between 7000 and 500 cal BC. Quat Int 200:77–99CrossRefGoogle Scholar
  49. Martínez-Cortizas A, Garcı́a-Rodeja E, Pontevedra-Pombal X, Nóvoa Muñoz JC, Weiss D, Cheburkin A (2002) Atmospheric Pb deposition in Spain during the last 4600 years recorded by two ombrotrophic peat bogs and implications for the use of peat as archive. Peat Bog Archives of Atmospheric Metal Deposition 292(1–2):33–44.  https://doi.org/10.1016/S0048-9697(02)00031-1 CrossRefGoogle Scholar
  50. Martínez-Cortizas A, Kaal J, Costa Casais M (2009b) Human activities and Holocene environmental change in NW Spain. In: Sánchez Díaz J, Asins Velis S (eds) Control de la degradación de los suelos y cambio global. Universidad de Valencia, Valencia, pp 193–208Google Scholar
  51. Martínez-Cortizas A, Mighall T, Pontevedra-Pombal X, Nóvoa Muñoz JC, Varela EP, Rebolo RP (2005) Linking changes in atmospheric dust deposition, vegetation change and human activities in northwest Spain during the last 5300 years. The Holocene 15:698–706CrossRefGoogle Scholar
  52. McCarrol D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23(7–8):771–801CrossRefGoogle Scholar
  53. Méndez Fernández F (1994) La domesticación del paisaje durante la Edad del Bronce gallego. Trab Prehist 51:77–94CrossRefGoogle Scholar
  54. Mighall TM, Martínez-Cortizas A, Biester H, Turner SE (2006) Proxy climate and vegetation changes during the last five millennia in NW Iberia: pollen and non-pollen palynomorph data from two ombrotrophic peat bogs in the North Western Iberian Peninsula. Quaternary non-pollen palynomorphs 141(1–2):203–223.  https://doi.org/10.1016/j.revpalbo.2006.03.013 CrossRefGoogle Scholar
  55. Mora-González A (2012) Una aproximación al análisis de isótopos estables (δ13C y δ15N) en restos carpológicos a través del poblado argárico de Peñalosa. Límites y perspectivas. Universidad de Granada, GranadaGoogle Scholar
  56. Mora-González A (2017) Irrigación y secano en el Mediterráneo Occidental (III-I milenio A.N.E.): un estudio isotópico. Universidad de Granada, GranadaGoogle Scholar
  57. Mora-González A, Delgado-Huertas A, Granados-Torres A, Contreras Cortés F, Jover Maestre FJ, López Padilla JA (2016) The isotopic footprint of irrigation in the western Mediterranean basin during the Bronze Age: the settlement of Terlinques, southeast Iberian Peninsula. Veg Hist Archaeobotany 25(5):459–468.  https://doi.org/10.1007/s00334-016-0560-4 CrossRefGoogle Scholar
  58. Mora-González A, Delgado-Huertas A, Granados-Torres A, Contreras Cortés F, Pavón Soldevila I, Duque Espino D (2018) Complex agriculture during the second millennium bc: isotope composition of carbon studies (δ13C) in archaeological plants of the settlement Cerro del Castillo de Alange (SW Iberian Peninsula, Spain). Veg Hist Archaeobotany 27(3):453–462.  https://doi.org/10.1007/s00334-017-0634-y
  59. Mora-González A, Fernandes R, Contreras Cortés F, Granados-Torres A, Alarcón García E, Delgado-Huertas A (2018) Reporting atmospheric CO2 pressure corrected results of stable carbon isotope analyses of cereals remains from the archaeological site of Peñalosa (SE Iberian Peninsula): agricultural and social implications. Archaeol Anthropol Sci.  https://doi.org/10.1007/s12520-018-0650-6
  60. Nitsch E, Andreou S, Creuzieux A, Gardeisen A, Halstead P, Isaakidou V, Karathanou A, Kotsachristou D, Nikolaidou D, Papanthimou A, Petridou C, Triantaphyllou S, Valamoti SM, Vasileiadou A, Bogaard A (2017) A bottom-up view of food surplus: using stable carbon and nitrogen isotope analysis to investigate agricultural strategies and diet at Bronze Age Archontiko and Thessaloniki Toumba, northern Greece. World Archaeol 49:1–33.  https://doi.org/10.1080/00438243.2016.1271745 CrossRefGoogle Scholar
  61. Parcero Oubiña C (2000) Tres para dos. Las formas del poblamiento en la Edad del Hierro del Noroeste Ibérico. Trab Prehist 57(1):75–95CrossRefGoogle Scholar
  62. Parcero Oubiña C, Ayán Vila XM (2009) Almacenamiento, unidades domésticas y comunidades en el noroeste prerromano. In: García Huerta R, Rodríguez González D (eds) Sistemas de almacenamiento entre los pueblos prerromanos peninsulares. Ediciones de la Universidad de Castilla La Mancha, Cuenca, pp 367–402Google Scholar
  63. Parcero Oubiña C, Ayán Vila XM, Fábrega Álvarez P, Teira-Brión A (2007) Arqueología, paisaje y sociedad. In: González García FJ (ed) Los pueblos de la Galicia Céltica. Akal, Madrid, pp 131–258Google Scholar
  64. Parcero Oubiña C, Criado Boado F (2013) Social chance, social resistance: a long-term approach to the processes of transformation of social landscapes in the Northwest Iberian Peninsula. In: Cruz Berrocal M, García Sanjuan L, Gilman A (eds) The prehistory of Iberia: debating early social stratification and the state. Rouledge, pp 249–266Google Scholar
  65. Peña-Chocarro L, Pérez Jordà G, Alonso N, Antolín F, Teira-Brión A, Tereso JP, Montes Moya EM, López Reyes D (2017) Roman and medieval crops of the Iberian Peninsula: a first synthesis of seeds and fruits from archaeological sites. Quat Int doi: https://doi.org/10.1016/j.quaint.2017.09.037
  66. Peña-Chocarro L (1999) Prehistoric agriculture in southern Spain during the Neolithic and the Bronze Age. B.A.R International Series, 818, OxfordGoogle Scholar
  67. Pérez-Arlucea M, Álvarez-Iglesias P, Rubio B (2007) Holocene evolution of estuarine and tidal-flat sediments in San Simón Bay, Galicia, NW Spain. J Coast Res 50:163–167Google Scholar
  68. Pérez-Obiol RP, Jalut G, Julià R, Pèlachs A, Iriarte MJ, Otto T, Hernández-Beloqui B (2011) Mid-Holocene vegetation and climatic history of the Iberian Peninsula. The Holocene 21(1):75–93CrossRefGoogle Scholar
  69. Pontevedra-Pombal X, Mighall TM, Nóvoa-Muñoz JC, Peiteado-Varela E, Rodríguez-Racedo J, García-Rodeja E, Martínez-Cortizas A (2013) Five thousand years of atmospheric Ni, Zn, As, and Cd deposition recorded in bogs from NW Iberia: prehistoric and historic anthropogenic contributions. JAS 40(1):764–777.  https://doi.org/10.1016/j.jas.2012.07.010 CrossRefGoogle Scholar
  70. Ramil-Rego P, Muñoz-Sobrino C, Rodríguez-Guitián M, Gómez-Orellana L (1998) Differences in the vegetation of the North Iberian Peninsula during the last 16,000 years. Plant Ecol 138(1):41–62.  https://doi.org/10.1023/A:1009736432739 CrossRefGoogle Scholar
  71. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EMS, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–1887CrossRefGoogle Scholar
  72. Rey Castiñeira J, Martín-Seijo M, Teira-Brión A, Abad Vidal E, Calo Ramos N, Carballo-Arceo LX, Comendador Rey B, Picón Platas I, Varelas Montes AM (2011) “CastroBYTE”: un modelo para a xestión da información arqueolóxica. Gallaecia 30:67–106Google Scholar
  73. Riehl S, Pustovoytov K, Weippert H, Klett S, Hole F (2014) Drought stress variability in ancient Near Eastern agricultural systems evidenced by δ13C in barley grain. Proc Natl Acad Sci U S A 111(34):12348–12353CrossRefGoogle Scholar
  74. Rodríguez Lado L, Tapia del Río L, Pérez M, Taboada T, Martínez-Cortizas A, Macías F (2016) Atlas digital de propiedades de suelos de Galicia, vol 2/08/2017. vol Book, Whole. Universidade de Santiago de Compostela, Santiago de CompostelaGoogle Scholar
  75. Rovira N (2007) Agricultura y gestión de los recursos vegetales en el sureste de la Península Ibérica durante la Prehistoria Reciente. Universitat Pompeu Fabra, BarcelonaGoogle Scholar
  76. Silva-Sánchez N, Cortizas AM, López-Merino L (2014) Linking forest cover, soil erosion and mire hydrology to late-Holocene human activity and climate in NW Spain. The Holocene 24(6):714–725.  https://doi.org/10.1177/0959683614526934 CrossRefGoogle Scholar
  77. Styring A, Rösch M, Stephan E, Stika H-P, Fischer E, Sillmann M, Bogaard A (2017) Centralisation and long-term change in farming regimes: comparing agricultural practices in Neolithic and Iron Age south-west Germany. PPS 83:357–381.  https://doi.org/10.1017/ppr.2017.3 CrossRefGoogle Scholar
  78. Styring AK, Ater M, Hmimsa Y, Fraser R, Miller H, Neef R, Pearson JA, Bogaard A (2016) Disentangling the effect of farming practice from aridity on crop stable isotope values: a present-day model from Morocco and its application to early farming sites in the eastern Mediterranean. The Anthropocene Review 3(1):2–22.  https://doi.org/10.1177/2053019616630762 CrossRefGoogle Scholar
  79. Tans PP, Mook WG (1980) Past atmospheric CO2 levels and the 13C/12C ratios in tree rings. Tellus 32:268–283Google Scholar
  80. Teira-Brión A, Martín-Seijo M, Rey-Castiñeira J, Carballo-Arceo LX (2016) Almacenaje agrario y gestión forestal en la Edad del Hierro: el yacimiento de Castrovite (NW Iberia). Paper presented at the Old and New Words: the global challenges of rural history. V Encontro Rural RePort=XV Congreso de Historia Agraria de la SEHA, LisbonGoogle Scholar
  81. Teira-Brión A (2013) Dentro y fuera del bosque. La gestión de Prunus avium/cerasus en época romana y medieval en el NW Ibérico Arkeogazte 3:99–115Google Scholar
  82. Tereso JP, Bettencourt AMS, Ramil-Rego P, Teira-Brión A, López-Dóriga I, Lima A, Almeida R (2016) Agriculture in NW Iberia during the Bronze Age: a review of archaeobotanical data. J Archaeol Sci Rep 10:44–58.  https://doi.org/10.1016/j.jasrep.2016.07.011 CrossRefGoogle Scholar
  83. Tereso JP, Ramil-Rego P, Almeida-da-Silva R (2013a) Roman agriculture in the conventus Bracaraugustanus (NW Iberia). JAS 40(6):2848–2858Google Scholar
  84. Tereso JP, Ramil-Rego P, Álvarez González Y, López González L, Almeida-da-Silva R (2013b) Massive storage in As Laias/O Castelo (Ourense, NW Spain) from the Late Bronze Age/Iron Age transition to the Roman period: a palaeoethnobotanical approach. JAS 40(11):3865–3877.  https://doi.org/10.1016/j.jas.2013.05.007 CrossRefGoogle Scholar
  85. Torres Martínez JF (2003) A economía dos celtas da Hispania atlántica. Toxosoutos, NoiaGoogle Scholar
  86. Wallace M, Jones GEM, Charles M, Fraser R, Halstead P, Heaton THE, Bogaard A (2013) Stable carbon isotope analysis as a direct means of inferring crop water status and water management practices. World Archaeol 45(3):388–409.  https://doi.org/10.1080/00438243.2013.821671 CrossRefGoogle Scholar
  87. Wallace MP, Jones G, Charles M, Fraser R, Heaton THE, Bogaard A (2015) Stable carbon isotope evidence for Neolithic and Bronze Age Crop Water Management in the Eastern Mediterranean and Southwest Asia. PLoS One 10(6):e0127085.  https://doi.org/10.1371/journal.pone.0127085 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Prehistoria y ArqueologíaUniversidad de GranadaGranadaSpain
  2. 2.Instituto Andaluz de Ciencias de la Tierra (IACT)GranadaSpain
  3. 3.Grupo de Estudos para a Prehistoria do NW Ibérico-Arqueoloxía, Antigüidade e Territorio (GEPN-AAT), Departamento de HistoriaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations