Anthropic resource exploitation and use of the territory at the onset of social complexity in the Neolithic-Chalcolithic Western Pyrenees: a multi-isotope approach

  • Izaskun Sarasketa-GartziaEmail author
  • Vanessa Villalba-Mouco
  • Petrus Le Roux
  • Álvaro Arrizabalaga
  • Domingo C. Salazar-García
Original Paper


Carbon (δ13C) and nitrogen (δ15N) stable isotope analyses from bone collagen provide information about the dietary protein input, while strontium isotopes (87Sr/86Sr) from tooth enamel give us data about provenance and potential territorial mobility of past populations. To date, isotopic results on the prehistory of the Western Pyrenees are scarce. In this article, we report human and faunal values of the mentioned isotopes from the Early-Middle Neolithic site of Fuente Hoz (Anuntzeta) and the Late Neolithic/Early Chalcolithic site of Kurtzebide (Letona, Zigoitia). The main objectives of this work are to analyse the dietary and territorial mobility patterns of these populations. Furthermore, as an additional aim, we will try to discuss social ranking based on the isotope data and existing literature on this topic in the region of study. Our results show that, based on the bioavailable Sr values, both purported local and non-local humans were buried together at the sites. Additionally, they suggest similar resource consumption based on C3 terrestrial resources (i.e. ovicaprids, bovids, and suids) as the main part of the protein input. Overall, this study sheds light on how individuals from different backgrounds were still buried together and shared the same “dietary lifestyle” at a time in the Prehistory of Iberia when social complexities started to appear.


Carbon, nitrogen, and strontium isotopes Diet Provenance Territorial mobility Neolithic Chalcolithic Iberian Peninsula 



This study is part of ISG’s Doctoral Thesis, supervised by AA and DCSG. All authors would like to thank the Cultural Heritage Centre of the Basque Government and the depository of the Bibat (Archaeological Museum of Araba) for permission to carry out the necessary sampling for the analyses. We would also like to thank Fayrooza Rawoot, Kerryn Gray, and Ian Newton for technical assistance. Thanks also to Christel Tinguely for the Sr concentration values.

Funding information

ISG benefits from a post-graduate grant of the Basque Government. ISG and AA have been partially funded by the research project of the Spanish Science Ministry HAR2014-53536-P (La ruta occidental del poblamiento de la Península Ibérica durante el Paleolítico medio y superior), and the Research Team in Prehistory at the University of the Basque Country (IT-622-13). Sample preparation material and analytical costs were paid by DCSG’s UCT and BBVA grants. VVM has a pre-doctoral scholarship funded by the Government of Aragon and European Social Fund (REF: BOA20150701025).


  1. Alt KW, Zesch S, Garrido-Pena R, Knipper C, Szécsényi-Nagy A, Roth C, Tejedor-Rodríguez C, Held P, García-Martínez-de-Lagrán I, Navitainuck D, Arcusa Magallón H, Rojo-Guerra MA (2016) A community in life and death: the Late Neolithic megalithic tomb at Alto de Reinoso (Burgos, Spain). PLoS One 11(1):e0146176CrossRefGoogle Scholar
  2. Altuna J (1980) Historia de la domesticación animal, en el País Vasco, desde sus orígenes hasta la romanización. Munibe Antropol Arq 32(1–2):9–163Google Scholar
  3. Ambrose SH (1993) Isotopic analysis of paleodiets: methodological and interpretative considerations. In: Stanford MK (ed) Investigations of ancient human tissue: chemical analyses in anthropology. Gordon and Breach Science Publishers, Langhorne, pp 59–130Google Scholar
  4. Arias P (2005) Determinaciones de isótopos estables en restos humanos de la región Cantábrica. Aportación al estudio de la dieta de las poblaciones del Mesolítico y Neolítico. Munibe Antropol Arq 57:359–374Google Scholar
  5. Baldeón A (1983) IV Campaña de Excavaciones del Covacho de Fuente Hoz. Arkeoikuska 83:12–15Google Scholar
  6. Baldeón A, García E, Ortiz L, Lobo P (1983) Excavaciones en el yacimiento de Fuente Hoz (Anúcita, Alava). Estudios de Arqueol Alavesa :7–68Google Scholar
  7. Barandiaran JM (1927) Contribución al estudio de establecimientos humanos y pastoriles del País Vasco. Anu de Eusko Folklore 7:137–141Google Scholar
  8. Barandiaran JM (1953-1957) Aspectos sociográficos de la población del Pirineo Vasco. Eusko Jakintza VII:3-26. BayonneGoogle Scholar
  9. Barandiaran JM, Manterola A (eds) (2000) Atlas etnográfico de Vasconia. Ganadería y pastoreo en Vasconia. Eusko Jaurlaritza, Gobierno de Navarra, Etniker EuskalerriaGoogle Scholar
  10. Basabe JM, Bennassar I (1983) Estudios antropológicos del yacimiento de Fuente Hoz (Anúcita, Álava). Estud Arqueol de Arqueol Alavesa 11:77–119Google Scholar
  11. Bentley R (2006) Strontium isotopes from the earth to the archaeological skeleton: a review. J Archaeol Method Theory 13:135–187CrossRefGoogle Scholar
  12. Bentley R, Knipper C (2005) Transhumance at the early Neolithic settlement of Vaihingen (Germany). Antiq 70 (306)Google Scholar
  13. Bogaard A, Heaton TH, Poulton P, Merbach I (2007) The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. J Archaeol Sci 34(3):335–343CrossRefGoogle Scholar
  14. Bonsall C, Anderson DE, Macklin MG (2002) The Mesolithic–Neolithic transition in western Scotland and its European context. Doc Praehist 29:1–19CrossRefGoogle Scholar
  15. Britton K, Grimes V, Dau J, Richards MP (2009) Reconstructing faunal migrations using intra-tooth sampling and strontium and oxygen isotope analyses: a case study of modern caribou (Rangifer tarandus granti). J Archaeol Sci 36(5):1163–1172CrossRefGoogle Scholar
  16. Bronk Ramsey C, Lee S (2013) Recent and planned developments of the program OxCal. Radiocarbon 55(2-3): 720–730Google Scholar
  17. Brown TA, Nelson DE, Vogel JS, Southon JR (1988) Improved collagen extraction by modified Longin method. Radiocarb 30:171–177CrossRefGoogle Scholar
  18. Castro PV, Escoriza T, Oltra Puigdomenech J (2006) Sociological hypotheses for the communities of the Iberian Mediterranean basin (VI to II millennia cal BC). In: Díaz del Río P, García Sanjuán L (eds) Social inequality in Iberian late prehistory. Archaeopress, Oxford, pp 117–131Google Scholar
  19. Chapman R (1990) Emerging complexity. The later prehistory of Southeast Spain, Iberia and the West Mediterranean. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Chapman R (2008) Producing inequalities: regional sequences in later prehistoric southern Spain. J World Prehist 21(3–4):195–260CrossRefGoogle Scholar
  21. Copeland SR, Sponheimer M, le Roux PJ, Grimes V, Lee-Thorp JA, de Ruiter DJ, Richards MP (2008) Strontium isotope ratios (87Sr/86Sr) of tooth enamel: a comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods. Rapid Commun Mass Spectrom 22:3187–3194CrossRefGoogle Scholar
  22. Copeland SR, Sponheimer M, Lee-Thorp JA, le Roux PJ, de Ruiter DJ, Richards MP (2010) Strontium isotope ratios in fossil teeth from South Africa: assessing laser ablation MC-ICP-MS analysis and the extent of diagenesis. J Archaeol Sci 37:1437–1446CrossRefGoogle Scholar
  23. Copeland SR, Cawthra HC, Fisher EC, Lee-Thorp JA, Cowling RM, le Roux PJ, Hodgkins J, Marean CW (2016) Strontium isotope investigation of ungulate movement patterns on the Pleistocene Paleo-Agulhas Plain of the Greater Cape Floristic Region, South Africa. Quat Sci Rev 141:65–84CrossRefGoogle Scholar
  24. De Carlos-Izquierdo JI (1988) Una aproximación territorial al Fenómeno Megalítico: La Rioja Alavesa y Cuartango. Munibe Antropol Arq 6:113–127Google Scholar
  25. Delibes G (2011) El pan y la Sal: La vida campesina en el Valle Medio del Duero hace cinco mil años. Real Academia de Bellas Artes de la Purísima Concepción, ValladolidGoogle Scholar
  26. Delibes G, Herrán Martínez JI, Santiago Pardo J, Val Recio J (1995) Evidence for social complexity in the copper age of the northern Meseta. In: Lillios KT (ed) The origin of complex societies in late prehistoric Iberia. International Monographs in Prehistory, Ann Arbor, pp 44–63Google Scholar
  27. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506CrossRefGoogle Scholar
  28. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351CrossRefGoogle Scholar
  29. Díaz del Río P (2006) An appraisal of social inequalities in Central Iberia (c. 5300–1600 cal BC). In: Díaz del Río P, García San Juán L (eds) Social inequality in Iberian. British archaeological reports international series 1525. Archaeopress, Oxford, pp 67–79Google Scholar
  30. Díaz del Río P, García Sanjuan L (2006) Social inequality in Iberian late prehistory, BAR international series 1525. Archaeopress, OxfordGoogle Scholar
  31. Dueso, Jose (1987) Nosotros los vascos. Mitos, Leyendas y Costumbres. Tomo II: Vida tradicional. Lur ArgitaletxeaGoogle Scholar
  32. Edeso-Fito JM, Mujika-Alustiza JA (2012) Megalitismo y cuevas sepulcrales en Gipuzkoa. Distribución espacial y características generales. Isturitz 12:83–114Google Scholar
  33. Evans JA, Montgomery J, Wildman G (2009) Isotope domain mapping of 87Sr/86Sr biosphere variation on the Isle of Skye, Scotland. J Geol Soc 166:617–631CrossRefGoogle Scholar
  34. Fernández-Crespo T, Schulting RJ (2017) Living different lives: early social differentiation identified through linking mortuary and isotopic variability in Late Neolithic/Early Chalcolithic north-central Spain. PlosOne 1(9)Google Scholar
  35. Fernández-Crespo T, Mujika JA, Ordoño J (2016) Aproximación al patrón alimentario de los inhumados en la cista de la Edad del Bronce de Ondarre (Aralar, Guipúzcoa) a través del análisis de isótopos estables de carbono y nitrógeno sobre colágeno óseo. Trab Prehist 73(2):325–334CrossRefGoogle Scholar
  36. Fischer A, Olsen J, Richards MP, Heinemeier J, Sveinbjornsdottir A, Bennike P (2007) Coast-inland mobility and diet in the Danish Mesolithic and Neolithic: evidence from stable isotope values of humans and dogs. J Archaeol Sci 34:2125–2150CrossRefGoogle Scholar
  37. Fontanals-Coll M, Subirà ME, Díaz-Zorita Bonilla M, Duboscq S, Gibaja JF (2015) Investigating palaeodietary and social differences between two differentiated sectors of a Neolithic community, La Bòbila Madurell-Can Gambús (north-east Iberian Peninsula). J Archaeol Sci Rep 3:160–170Google Scholar
  38. Fontanals-Coll M, Díaz-Zorita Bonilla M, Subirà ME (2016) A palaeodietary study of stable isotope analysis from a high-status burial in the copper age: the Montelirio megalithic structure at Valencina de la Concepción–Castilleja de Guzmán, Spain. Int J Osteoarchaeol 26(3):447–459CrossRefGoogle Scholar
  39. Fraser RA, Bogaard A, Schäfer M, Arbogast R, Heaton THE (2013) Integrating botanical, faunal and human stable carbon and nitrogen isotope values to reconstruct land use and palaeodiet at LBK Vaihingen an der Enz, Baden-Württemberg. World Archaeol 45(3):492–517CrossRefGoogle Scholar
  40. Fuller BT, Fuller JL, Sage NE, Harris DA, O’Connell TC, Hedges REM (2004) Nitrogen balance and δ15N: why you’re not what you eat during pregnancy. Rapid Commun Mass Spectrom 18:2889–2896CrossRefGoogle Scholar
  41. Gilman A (1987) Unequal development in Copper Age. In: Brumfiel EM, Earle TK (eds) Specialization, Exchange and Complex Societies. Cambridge University Press, Cambridge, pp 22–29Google Scholar
  42. Goude G, Castorina F, Herrscher E, Cabut S, Tafuri MA (2012) First strontium isotope evidence of mobility in the Neolithic southern France. Eur J Archaeol 15(3):421–439CrossRefGoogle Scholar
  43. Guiry EJ, Hillier M, Richards MP (2015) Mesolithic dietary heterogeneity on the European Atlantic Coastline: stable isotope insights into hunter-gatherer diet and subsistence in the Sado Valley, Portugal. Curr Anthropol 56(3):460–470CrossRefGoogle Scholar
  44. Harding AF, Fokkens H (2013) The Oxford handbook of the European Bronze Age. University Press, OxfordGoogle Scholar
  45. Haristoy P (1983) Recherches historiques sur le Pays Basque. BayonneGoogle Scholar
  46. Hedges REM, Reynard LM (2007) Nitrogen isotopes and the trophic level of humans in archaeology. J Archaeol Sci 34:1240–1251CrossRefGoogle Scholar
  47. Hedges REM, Clement JG, Thomas CDL, O’Connell TC (2007) Collagen turnover in the adult femoral mid-shaft: modelled from anthropogenic radiocarbon tracer measurements. Am J Phys Anthropol 133:808–816CrossRefGoogle Scholar
  48. Hillson S (1996) Dental anthropology. Cambrigde University Press, CambridgeCrossRefGoogle Scholar
  49. Iriarte-Chiapusso I, Zapata L (2004) La adopción de la economía de producción: la aportación de la arqueobotánica. Kobie 6(1):203–216Google Scholar
  50. Le Bras-Goude G (2011) Reconstructing past populations’ behaviours diet, bones and isotopes in the Mediterranean. Tüba-Ar 14:215–229CrossRefGoogle Scholar
  51. Le Bras-Goude G, Herrscher E, Vaquer J (2013) Funeral practices and foodstuff behaviour: what does eat meat mean? Stable isotope analysis of Middle Neolithic populations in the Languedoc region (France). J Anthropol Archaeol 32:280–287CrossRefGoogle Scholar
  52. Longin R (1971) New method of collagen extraction for radiocarbon dating. Nature 230:241–242CrossRefGoogle Scholar
  53. López-Costas O, Müldner G, Martínez Cortizas A (2015) Diet and lifestyle in Bronze Age Northwest Spain: the collective burial of Cova do Santo. J Archaeol Sci 55:209–2018CrossRefGoogle Scholar
  54. López-Davalillo J (2014) Geografía regional de España. UNED, MadridGoogle Scholar
  55. Makarewicz CA, Sealy K (2015) Dietary reconstruction, mobility, and the analysis of ancient skeletal tissues: expanding the prospects of stable isotope research in archaeology. J Archaeol Sci 56:146–158CrossRefGoogle Scholar
  56. Mariezkurrena K (1983) Fauna del yacimiento prehistórico de Fuente Hoz (Alava). Estudios de Arqueol Alavesa 11:69–76Google Scholar
  57. Maurer AF, Galer SJG, Knipper C, Beierlein L, Nunn EV, Peters D, Tütken T, Alt KW, Schöne BR (2012) Bioavailable 87Sr/86Sr in different environmental samples—effects of anthropogenic contamination and implications for isoscapes in past migration studies. Sci Total Environ 433:216–229CrossRefGoogle Scholar
  58. Milner N, Craig OE, Bailey GN, Pederson K, Andersen SH (2004) Something fishy in the Neolithic? A re-evaluation of stable isotope analysis of Mesolithic and Neolithic coastal populations. Antiquity 78:9–22CrossRefGoogle Scholar
  59. Minawaga M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between 15N and animal age. Geochim Cosmochim Acta 48:1135–1140CrossRefGoogle Scholar
  60. O'Connell TC, Knealec CJ, Tasevska N, Kuhnle GGC (2012) The diet body offset in human nitrogen isotopic values: a controlled dietary study. Am J Phys Anthropol 149(3):426–434CrossRefGoogle Scholar
  61. Ontañón R (2003) Caminos hacia la complejidad: el Calcolítico en la región cantábrica. Universidad de Cantabria, SantanderGoogle Scholar
  62. Ontañón R, Armendariz A (2005-2006) Cuevas y megalitos: los contextos sepulcrales colectivos en la Prehistoria reciente cantábrica. Munibe Antropol Arq 57: 257–286Google Scholar
  63. Pérez-Obiol R, Jalut G, Julià R, Pèlachs A, Iriarte MJ, Otto T, Hernández-Beloqui B (2011) Mid-Holocene vegetation and climatic history of the Iberian Peninsula. The Holocene 21(1):1–19CrossRefGoogle Scholar
  64. Pericot L (1925) La civilización megalítica catalana y la cultura pirenaica. Universidad de Barcelona, BarcelonaGoogle Scholar
  65. Pin C, Briot D, Bassin C, Poitrasson F (1994) Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal Chim Acta 298:209–217CrossRefGoogle Scholar
  66. Price TD, Burton JH, Bentley RA (2002) The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry 44(1):117–135CrossRefGoogle Scholar
  67. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, HattŽ C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 55(4):1869–1887.CrossRefGoogle Scholar
  68. Richards MP, Schulting RJ, Hedges REM (2003) Sharp shift in diet at onset of Neolithic. Nature 425:366CrossRefGoogle Scholar
  69. Richards MP, Harvati K, Grimes V, Smith C, Smith T, Hublin JJ, Karkanas P, Pangopoulou E (2008) Strontium isotope evidence of Neanderthal mobility at the site of Lakonis, Greece using laser-ablation PIMMS. J Archaeol Sci 35:1251–1256CrossRefGoogle Scholar
  70. Salazar-García DC (2011) Isótopos, dieta y movilidad en el País Valenciano. Aplicación a restos humanos del Paleolítico Medio al Neolítico Final. PhD thesis. Universidad de ValenciaGoogle Scholar
  71. Salazar-García DC, Benítez de Lugo Enrich LB, Álvarez-García HJ, Benito-Sánchez M (2013) Estudio diacrónico de la dieta de los pobladores antiguos de Terrinches (Ciudad Real) a partir del análisis de isótopos estables sobre restos óseos humanos. Rev Esp de Antropol Fis 34:6–14Google Scholar
  72. Salazar-García DC, Emili-Aura J, Olària C, Talamo S, Morales J, Richards MP (2014a) Isotope evidence for the use of marine resources in the Eastern Iberian Mesolithic. J Archaeol Sci 42:231–240CrossRefGoogle Scholar
  73. Salazar-García DC, Richards MP, Nehlich O, Henry AG (2014b) Dental calculus is not equivalent to bone collagen for isotope analysis: a comparison between carbon and nitrogen stable isotope analysis of bulk dental calculus, bone and dentine collagen from same individuals from the medieval site of El Raval (Alicante, Spain). J Archaeol Sci 47:70–77CrossRefGoogle Scholar
  74. Salazar-García DC, Fontanals-Coll M, Goude G, Subirà ME (2018) To ‘seafood’ or not to ‘seafood’? An isotopic perspective on dietary preferences at the Mesolithic-Neolithic transition in the Western Mediterranean. Quat Int 470:497–510. CrossRefGoogle Scholar
  75. Sarasketa-Gartzia I, Villalba-Mouco V, le Roux P, Arrizabalaga Á, Salazar-García DC (2017) Late Neolithic-Chalcolithic socio-economical dynamics in northern Iberia. A multi-isotope study on diet and provenance from Santimamiñe and Pico Ramos archaeological sites (Basque Country, Spain). Quat Int 481:14–27CrossRefGoogle Scholar
  76. Schoeller DA (1999) Isotope fractionation: why aren’t we what we eat? J Archaeol Sci 26:667–673CrossRefGoogle Scholar
  77. Schoeninger MJ, DeNiro MJ (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Acta 48:625–639CrossRefGoogle Scholar
  78. Schulting R (2003) The marrying kind: evidence for a patrilocal postmarital residence pattern in the Mesolithic of Southern Brittany? Mesolithic Horizons (II):431–441Google Scholar
  79. Schulting RJ, Richards MP (2002) The wet, the wild and the domesticated: the Mesolithic–Neolithic transition in the west coast of Scotland. J Eur Archaeol 5:147–189Google Scholar
  80. Slovak N, Paytan A (2012) Applications of Sr isotopes in archaeology. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Advances in isotope geochemistry:743–768Google Scholar
  81. Snoeck C, Pouncett J, Ramsey G, Meighan IG, Mattielli N, Goderis S, Lee-Thorp JA, Schulting RJ (2016) Mobility during the Neolithic and Bronze Age in Northern Ireland explored using strontium isotope analysis of cremated human bone. Am J Phys Anthropol 160:397–413CrossRefGoogle Scholar
  82. Strauss A, Oliveira RE, Bernardo D, Salazar-García DC, Talamo S, Jaouen K, Hubbe M, Black S, Wilkinson C, Richards MP, Araujo A, Kipnis R, Neves W (2015) The oldest case of decapitation in the New World. PlosONE 10(9):e0137456CrossRefGoogle Scholar
  83. Tieszen LL, Fagre T (1993) Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite and soft tissues. In Lambert JB, Grupe G (eds.) Prehistoric human bone. Archaeology at the molecular level: 121–155Google Scholar
  84. Van der Merwe NJ (1982) Carbon isotopes, photosynthesis and archaeology: different pathways of photosynthesis cause characteristic changes in carbon isotope ratios that make possible study of prehistoric human diets. Am Sci 70(6):596–606Google Scholar
  85. Van der Merwe NJ, Vogel JC (1978) 13C content of human collagen as a measure of prehistoric diet in Woodland North America. Nature 276:815–816CrossRefGoogle Scholar
  86. Van Klinken GJ (1999) Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J Archaeol Sci 26:687–695CrossRefGoogle Scholar
  87. Vegas JI (1981) Túmulo-dolmen de Kurtzebide en Letona. Memoria de excavación. Estud Arqueol Alavesa (Homenaje a Enrique Eguren):19–67Google Scholar
  88. Villalba-Mouco V, Sauqué V, Sarasketa-Gartzia I, Pastor MV, le Roux PJ, Vicente D, Utrilla P, Salazar-García DC (2017) Territorial mobility and subsistence strategies during the Ebro Basin Late Neolithic-Chalcolithic: a multi-isotope approach from San Juan cave (Loarre, Spain). Quat Int 481:28–41CrossRefGoogle Scholar
  89. Villalba-Mouco V, Sarasketa-Gartzia I, Utrilla P, Oms FX, Mazo C, Mendiela S, Cebrià A, Salazar-Garcia DC (2018) Stable isotope ratio analysis of bone collagen as indicator of different dietary habits and environment conditions in northeastern Iberia during the 4th and 3rd millennium cal B.C. Archaeol Anthropol Sci.
  90. Vogel JC, Van der Merwe NJ (1977) Isotopic evidence for early maize cultivation in New York State. Am Antiq 42:238–242CrossRefGoogle Scholar
  91. Waterman AJ, Tykot RH, Silva AM (2016) Stable isotope analysis of diet-based social differentiation at late prehistoric collective burials in south-western Portugal. Archaeometry 58(1):131–151CrossRefGoogle Scholar
  92. Zapata L (2002) Origen de la agricultura en el País Vasco y transformaciones en el paisaje: análisis de restos vegetales arqueológicos. Serie Kobie, Anejo 4. Bizkaiko Foru Aldundia-Diputación Foral de BizkaiaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Izaskun Sarasketa-Gartzia
    • 1
    Email author
  • Vanessa Villalba-Mouco
    • 2
  • Petrus Le Roux
    • 3
  • Álvaro Arrizabalaga
    • 1
  • Domingo C. Salazar-García
    • 3
    • 4
  1. 1.Departamento de GeografíaPrehistoria y Arqueología. Universidad del País Vasco-Euskal Herriko UnibertsitateaVitoria-GasteizSpain
  2. 2.Grupo Primeros Pobladores del Valle del Ebro (PPVE), Instituto de Investigación en Ciencias Ambientales (IUCA)Universidad de ZaragozaZaragozaSpain
  3. 3.Departament of Geological SciencesUniversity of Cape TownCape TownSouth Africa
  4. 4.Grupo de Investigación en Prehistoria IT-622-13 (UPV-EHU)/IKERBASQUE-Basque Foundation for ScienceVitoria-GasteizSpain

Personalised recommendations