Advertisement

Stable isotope ratio analysis of bone collagen as indicator of different dietary habits and environmental conditions in northeastern Iberia during the 4th and 3rd millennium cal B.C.

  • Vanessa Villalba-Mouco
  • Izaskun Sarasketa-Gartzia
  • Pilar Utrilla
  • F. Xavier Oms
  • Carlos Mazo
  • Susana Mendiela
  • Artur Cebrià
  • Domingo C. Salazar-García
Original Paper

Abstract

The Late Neolithic and Chalcolithic periods are poorly understood in northeastern Iberia. Most of the information comes from the sepulchral structures rather than habitat settlements. The high number of individuals usually recovered from this types of collective burial spaces, together with the low number of direct radiocarbon dates available on them, forces us to be cautious and consider all the studied assemblages as belonging to the so-called Late Neolithic-Chalcolithic time period. To evaluate human dietary patterns of the Late Neolithic-Chalcolithic populations from the northeast of Iberia, stable carbon and nitrogen isotope analysis was carried out on 78 humans and 32 faunal bones from Cova de la Guineu (Font-rubí, Barcelona) and Cueva de Abauntz (Arraitz, Navarra), both of them sepulchral sites. Results show a common dietary pattern in both sites, indicating an homogeneous protein diet based on C3 terrestrial resources and no isotopic evidence of the consumption of C4 plants. Only one individual from Cueva de Abauntz, who directly dates to the first moments of the use of the cave as a burial place, suggests a different protein intake. The inter-population analysis shows a significant difference between both human and faunal δ13C values, suggesting an environmental influence on the isotope values depending on the geographic location. This effect should not be discarded and always assessed with baseline isotopic values in future studies at each area of Iberia and for different chronological moments.

Keywords

Sepulchral caves Late Neolithic-Chalcolithic Carbon and nitrogen isotopes Cova de la Guineu Cueva de Abauntz 

Notes

Acknowledgments

VVM has a predoctoral scholarship funded by the Gobierno de Aragón and the Fondo Social Europeo (BOA20150701025) and did a research stay at the University of Cape Town funded by the Fundación Ibercaja-CAI (2016) and DCSG’s UCT and BBVA research grants. VVM, CMP and PU are members of the Spanish project HAR2014-59042-P (Transiciones climáticas y adaptaciones sociales en la prehistoria de la Cuenca del Ebro), and VVM, CMP and PU are members of the regional government of Aragón PPVE research group (H-07: Primeros Pobladores del Valle del Ebro). ISG has a predoctoral scholarship funded by Basque Goverment and is a member of the Spanish project HAR2014-53536-P and IT-662-13. All authors would like to thank the Museo de Navarra, specially to Jesús García Gazólaz for allowing the study of Cueva de Abauntz in the Universidad de Zaragoza facilities, as well as to the Centro de Espeleología de Aragón (CEA), specially Mario Gisbert for the topography of Cueva de Abauntz. We also thank Víctor Sauqué for the help with fauna identification and Jesús Laborda and J. Ignacio Lorenzo for their help in the transport of the archaeological material, as well as Ian Newton for the technical assistance.

References

  1. Alday A (1995) Los elementos de adorno personal de la cueva del Moro de Olvena y sus derivaciones cronológico-culturales. Bolskan 12, 193–214Google Scholar
  2. Alt KW, Zesch S, Garrido-Pena R, Knipper C, Szécsényi-Nagy A, Roth C, Tejedor-Rodríguez C, Held P, García-Martínez-de-Lagrán I, Navitainuck D, Arcusa H, Rojo-Guerra MA (2016) A community in life and death: the Late Neolithic megalithic tomb at Alto de Reinoso (Burgos, Spain). PLoS One 11(1):e0146176CrossRefGoogle Scholar
  3. Altuna J, Mariezcurrena K, Elorza M 2002 Arquezoología de los niveles Paleolíticos de la Cueva de Abauntz (Arraiz, Navarra). Saldvie 2, 1–26Google Scholar
  4. Ambrose SH (1991) Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. J Archaeol Sci 18(3):293–317CrossRefGoogle Scholar
  5. Ambrose SH (1993) Isotopic analysis of paleodiets: methodological and interpretative considerations. In: Stanford MK (ed) Investigations of ancient human tissue: chemical analyses in anthropology. Gordon and Breach Science Publishers, Langhorne, pp 59–130Google Scholar
  6. Ambrose SH, DeNiro MJ (1986) The isotopic ecology of East African mammals. Oecologia 69(3):395–406CrossRefGoogle Scholar
  7. Ambrose SH, Norr L (1993) Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: Lambert JB, Gruppe G (eds) Prehistoric human bone: archaeology at the molecular level. Springer Verlag, Berlin, pp 1–37Google Scholar
  8. Andrés MT (1998) Colectivismo funerario neo-eneolítico. Aproximación metodológica sobre datos de la Cuenca Alta y Media del Ebro. Institución Fernando el Católico. Diputación de Zaragoza, ZaragozaGoogle Scholar
  9. Barja I (2017) Marta – Martes martes. In: Salvador, A., Barja, I. (Eds.), Enciclopedia Virtual de los Vertebrados Españoles. Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/
  10. Beaumont J, Gledhill A, Lee-Thorp J, Montgomery J (2013) Childhood diet: a closer examination of the evidence from dental tissues using stable isotope analysis of incremental human dentine. Archaeometry 55(2):277–295CrossRefGoogle Scholar
  11. Blasco C, Ríos P (2010) La función del metal entre los grupos campaniformes. Oro versus cobre. El ejemplo de la Región de Madrid. Trab Prehist 67(2):359–372CrossRefGoogle Scholar
  12. Blasco C, Delibes G, Baena J, Liesau C, Ríos P (2007) El poblado calcolítico de Camino de las Yeseras (San Fernando de Henares, Madrid): un escenario favorable para el estudio de la incidencia campaniforme en el interior peninsular. Trab Prehist 64(1):151–163CrossRefGoogle Scholar
  13. Bocherens H, Drucker D (2003) Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: case studies from recent and ancient terrestrial ecosystems. Int J Osteoarchaeol 13(1–2):46–53CrossRefGoogle Scholar
  14. Bogaard A, Heaton THE, Poulton P, Merbach I (2007) The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. J Archaeol Sci 34:335–343CrossRefGoogle Scholar
  15. Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–360CrossRefGoogle Scholar
  16. Brown TA, Nelson DE, Vogel JS, Southon JR (1988) Improved collagen extraction by modified Longin method. Radiocarbon 30:171–177CrossRefGoogle Scholar
  17. Buikstra JE, Ubelaker DH (1994) Standards for data collection from human skeletal remains. In: Arkansas Archaeological Survey Research Series (Fayetteville)Google Scholar
  18. Cox G, Sealy J (1997) Investigating identity and life histories: isotopic analysis and historical documentation of slave skeletons found on the Cape Town foreshore, South Africa. Int J Hist Archaeol 1(3):207–224CrossRefGoogle Scholar
  19. Craig H (1953) The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta 3(2–3):53–92CrossRefGoogle Scholar
  20. Delibes G, Herrán JI, Santiago J, de Val J (1995) Evidence for social complexity in the Copper Age of the Northern Meseta. In: Lillios KT (ed) The origins of complex societies in late prehistoric Iberia. International Monographs in Prehistory 8, pp. 44–63Google Scholar
  21. DeNiro MJ (1985) Post-mortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317:806–809CrossRefGoogle Scholar
  22. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506CrossRefGoogle Scholar
  23. Díaz-Andreu M, Liesau C, Castaño A (1992) El poblado calcolítico de La Loma de Chiclana (Vallecas, Madrid). Excavaciones de urgencia realizadas en 1987. Arqueología, Paleontología y Etnografía 3:31–116Google Scholar
  24. Díaz-Zorita M (2014) The Copper Age. In: South-west Spain: a bioarchaeological approach to prehistoric social organisation. Durham University, Durham (Doctoral thesis)Google Scholar
  25. Drucker D, Bocherens H, Bridault A, Billiou D (2003) Carbon and nitrogen isotopic composition of red deer (Cervus elaphus) collagen as a tool for tracking palaeoenvironmental change during the Late-Glacial and Early Holocene in the northern Jura (France). Palaeogeogr Palaeoclimatol Palaeoecol 195(3):375–388CrossRefGoogle Scholar
  26. Esquivel JA, Navas E (2007) Geometric architectural pattern and constructive energy analysis at Los Millares Copper Age Settlement (Santa Fé de Mondújar, Almería, Andalusia). J Archaeol Sci 34(6):894–904CrossRefGoogle Scholar
  27. Fahy GE, Richards M, Riedel J, Hublin JJ, Boesch C (2013) Stable isotope evidence of meat eating and hunting specialization in adult male chimpanzees. Proc Natl Acad Sci 110(15):5829–5833CrossRefGoogle Scholar
  28. Fernández-Crespo T (2016) El papel del fuego en los enterramientos neolíticos finales/calcolíticos iniciales de los abrigos de la Sierra de Cantabria y sus estribaciones (valle medio-alto del Ebro). Trab Prehist 73(1):128–146CrossRefGoogle Scholar
  29. Fernández-Crespo T, de-la-Rúa C (2015) Demographic evidence of selectiveburial in megalithic graves of northern Spain. J Archaeol Sci 53:604–617CrossRefGoogle Scholar
  30. Fernández-Crespo T, Schulting RJ (2017) Living different lives: early social differentiation identified through linking mortuary and isotopic variability in Late Neolithic/Early Chalcolithic north-central Spain. PLoS One 12(9):e0177881CrossRefGoogle Scholar
  31. Fernández-Crespo T, Mujika JA, Ordoño J (2016) Aproximación al patrón alimentario de los inhumados en la cista de la Edad del Bronce de Ondarre (Aralar, Guipúzcoa) a través del análisis de isótopos estables de carbono y nitrógeno sobre colágeno óseo. Trab Prehist 73(2):325–334CrossRefGoogle Scholar
  32. Fontanals-Coll M, Díaz-Zorita Bonilla M, Subirà ME (2015) A palaeodietary study of stable isotope analysis from a high-status burial in the copper age: the Montelirio megalithic structure at Valencina de la Concepción–Castilleja de Guzmán, Spain. Int J Osteoarchaeol 26(3):447–459CrossRefGoogle Scholar
  33. García Sanjuán L (2013) El asentamiento de la Edad del Cobre en Valencina de la Concepción: Estado actual de la investigación, debates y perspectivas. In: Sanjuán LG, Vargas JM, Hurtado V, Ruíz T, Cruz R (eds) El asentamiento prehistórico de Valencina de la Concepción (Sevilla): Investigación y tutela en el 150 aniversario del descubrimiento de La Pastora. Universidad de Sevilla, Sevilla, pp 21–60Google Scholar
  34. García-Borja P, Pérez Fernández A, Biosca Cirujeda V, Ribera i Gomes A, Salazar-García DC (2013) Los restos humanos de la Coveta del Frare (Font de la Figuera, València). In: García-Borja P, Revert E, Ribera A, Biosca V (eds) El Naiximent d'un Poble. Historia i Arqueologia de la Font de la Figuera. Ajuntament de la Font de la Figuera, pp. 47–60Google Scholar
  35. García-Guixé E (2011) Estudi paleoantropològic i paleopatològic del sepulcre col·lectiu de Forat de Conqueta (Santa Linya, Lleida). Treballs d'Arqueologia 17:37–98CrossRefGoogle Scholar
  36. Gimeno B (2009) Estudio antropológico de la cueva sepulcral de Loarre. Saldvie 9:369–392Google Scholar
  37. González-Guarda E, Domingo L, Tornero C, Pino M, Hernández MH, Sevilla P, Villalvicencio N, Agustí J (2017) Late Pleistocene ecological, environmental and climatic reconstruction based on megafauna stable isotopes from northwestern Chilean Patagonia. Quat Sci Rev 170:188–202CrossRefGoogle Scholar
  38. Goude G, Fontugne M (2016) Carbon and nitrogen isotopic variability in bone collagen during the Neolithic period: influence of environmental factors and diet. J Archaeol Sci 70:117–131CrossRefGoogle Scholar
  39. Guiry EJ, Grimes V (2013) Domestic dog (Canis familiaris) diets among coastal Late Archaic groups of northeastern North America: a case study for the canine surrogacy approach. J Anthropol Archaeol 32(4):732–745CrossRefGoogle Scholar
  40. Guiry EJ, Hillier M, Richards MP (2015) Mesolithic dietary heterogeneity on the European Atlantic coastline: stable isotope insights into hunter-gatherer diet and subsistence in the Sado Valley, Portugal. Curr Anthropol 56:460–470CrossRefGoogle Scholar
  41. Halley DJ, Rosvold J (2014) Stable isotope analysis and variation in medieval domestic pig husbandry practices in Northwest Europe: absence of evidence for a purely herbivorous diet. J Archaeol Sci 49:1–5CrossRefGoogle Scholar
  42. Handley LL, Austin AT, Stewart GR, Robinson D, Scrimgeour CM, Raven JA, Heaton THE, Schmidt S (1999) The 15N natural abundances (δ15N) of ecosystem samples reflects measures of water availability. Aust J Plant Physiol 26:185–199CrossRefGoogle Scholar
  43. Harrison RJ (1974) Ireland and Spain in the Early Bronze Age. J R Soc Antiqu Irel 104:52–73Google Scholar
  44. Heaton THE, Vogel H, Von la Chevallerie G, Gollet G (1986) Climatic influence on the isotopic composition of bone nitrogen. Nature 322:822–823CrossRefGoogle Scholar
  45. Hedges REM, Reynard LM (2007) Nitrogen isotopes and the trophic level of humans in archaeology. J Archaeol Sci 34:1240–1251CrossRefGoogle Scholar
  46. Hedges RE, Clement JG, Thomas CDL, O'connell TC (2007) Collagen turnover in the adult femoral mid-shaft: modeled from anthropogenic radiocarbon tracer measurements. Am J Phys Anthropol 133:808–816CrossRefGoogle Scholar
  47. Herrscher E, Bras-Goude L (2010) Southern French Neolithic populations: isotopic evidence for regional specificities in environment and diet. Am J Phys Anthropol 141(2):259–272Google Scholar
  48. Laffranchi Z, Huertas AD, Brobeil SAJ, Torres AG, Cantal JAR (2016) Stable C & N isotopes in 2100 year-BP human bone collagen indicate rare dietary dominance of C4 plants in NE-Italy. Sci Rep 6:1–8CrossRefGoogle Scholar
  49. Lee-Thorp JA (2008) On isotopes and old bones. Archaeometry 50(6):925–950CrossRefGoogle Scholar
  50. Lillie M, Budd C, Potekhina I (2011) Stable isotope analysis of prehistoric populations from the cemeteries of the Middle and Lower Dnieper Basin, Ukraine. J Archaeol Sci 38(1):57–68CrossRefGoogle Scholar
  51. Longin R (1971) New method of collagen extraction for radiocarbon dating. Nature 230:241–242CrossRefGoogle Scholar
  52. López-Costas O, Müldner G, Cortizas AM (2015) Diet and lifestyle in Bronze Age northwest Spain: the collective burial of Cova do Santo. J Archaeol Sci 55:209–218CrossRefGoogle Scholar
  53. Lozano J (2017) Gato montés – Felis silvestris. In: Salvador A, Barja I (eds) Enciclopedia Virtual de los Vertebrados Españoles. Museo Nacional de Ciencias Naturales, Madrid http://www.vertebradosibericos.org/ Google Scholar
  54. Lubell D, Jackes M, Schwarcz H, Knyf M, Meiklejohn C (1994) The Mesolithic-Neolithic transition in Portugal: isotopic and dental evidence of diet. J Archaeol Sci 21(2):201–216CrossRefGoogle Scholar
  55. Madgwick R, Mulville J, Stevens RE (2012) Diversity in foddering strategy and herd management in late Bronze Age Britain: an isotopic investigation of pigs and other fauna from two midden sites. Environ Archaeol 17:126–140CrossRefGoogle Scholar
  56. Mangas JG (2017) Garduña – Martes foina. In: Salvador A, Barja I (eds) Enciclopedia Virtual de los Vertebrados Españoles. Museo Nacional de Ciencias Naturales, Madrid http://www.vertebradosibericos.org/ Google Scholar
  57. McClure SB, García O, de Togores CR, Culleton BJ, Kennett DJ (2011) Osteological and paleodietary investigation of burials from Cova de la Pastora, Alicante, Spain. J Archaeol Sci 38(2):420–428CrossRefGoogle Scholar
  58. Mercadal O, Campillo D (1995) Patologia de la població prehistòrica de la cova de la Guineu (Fontrubí, Alt Penedès, Barcelona). Proceedings of the IX European meeting of the Paleopathology Association - I Congreso Nacional de Paleopatología (Barcelona, 1992). Museu d’Arqueologia de Catalunya. Barcelona, pp. 229–232Google Scholar
  59. Minagawa M, Wada E (1986) Nitrogen isotope ratios of red tide organisms in the East China Sea: a characterization of biological nitrogen fixation. Mar Chem 19(3):245–259CrossRefGoogle Scholar
  60. Montes L, Domingo R (2014) La ocupación de las Sierras Exteriores durante el Calcolítico. In: Utrilla P, Mazo C (eds) La Peña de las Forcas (Graus, Huesca). Un asentamiento estratégico en la confluencia del Ésera y el Isábena. Monografías Arqueológicas/Prehistoria 46, Universidad de Zaragoza, Zaragoza, pp 409–426Google Scholar
  61. Müldner G, Britton K, Ervynck A (2014) Inferring animal husbandry strategies in coastal zones through stable isotope analysis: new evidence from the Flemish coastal plain (Belgium, 1st–15th century AD). J Archaeol Sci 41:322–332CrossRefGoogle Scholar
  62. O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20(4):553–567CrossRefGoogle Scholar
  63. Olalde I, Brace S, Allentoft ME, Armit I, Kristiansen K, Booth T, Rohland N, Mallick S, Szécsényi-Nagy A, Mittnik A, Altena E, Lipson M, Lazaridis I, Harper TK, Patterson NJ, Broomandkhoshbacht N, Diekmann Y, Faltyskova Z, Fernandes DM, Ferry M, Harney E, de Knijff P, Michel M, Oppenheimer J, Stewardson K, Barclay A, Alt KW, Liseau C, Ríos P, Blasco C, Vega Miguel J, Menduiña García R, Avilés Fernández A, Bánffy E, Bernabò-Brea M, Billoin D, Bonsall C, Bonsall L, Allen T, Büster L, Carver S, Castells Navarro L, Craig OE, Cook GT, Cunliffe B, Denaire A, Dinwiddy KE, Dodwell N, Ernée M, Evans C, Kuchařík M, Farré JF, Fowler C, Gazenbeek M, Garrido Pena R, Haber-Uriarte M, Haduch E, Hey G, Jowett N, Knowles T, Massy K, Pfrengle S, Lefranc P, Lemercier O, Lefebvre A, Heras C, Galera V, Bastida A, Lomba J, Majó T, McKinley JI, McSweeney K, Gusztáv MB, Modi A, Kulcsár G, Kiss V, Czene A, Patay R, Endródi A, Köhler K, Hajdu T, Szeniczey T, Dani J, Bernert Z, Hoole M, Cheronet O, Velemínský P, Dobeš M, Candilio F, Brown F, Flores R, Herrero-Corral AM, Tusa S, Carnieri E, Lentini L, Valenti A, Zazini A, Waddington C, Delibes G, Guerra-Doce E, Neil B, Brittain M, Luke M, Mortimer R, Desideri J, Besse M, Brüken G, Furmanek M, Haluszko A, Mackiewicz M, Rapiński A, Leach S, Soriano I, Lillios KT, Cardoso JL, Pearson MP, Włodarczak P, Price TD, Prieto P, Rey PJ, Risch R, Rojo Guerra MA, Schmitt A, Serralongue J, Silva AM, Smrčka V, Vergnaud L, Zilhão J, Caramelli D, Higham T, Thomas MG, Kennett DJ, Fokkens H, Heyd V, Sheridan JA, Sjögren KG, Stockhammer PW, Krause J, Pinhasi R, Haak W, Barnes I, Lalueza-Fox C, Reich D (2018) The Beaker phenomenon and the genomic transformation of Northwest Europe. Nature 555:190–196CrossRefGoogle Scholar
  64. Oms FX, Cebrià A, Mestres J, Morales JI, Pedro M, Vergès JM (2016a) Campaniforme i metal·lúrgia en un espai sepulcral del III mil·lenni cal. BC: la Cova de la Guineu (Font-rubí, Alt Penedès). In: Esteve X, Miró C, Molist N, Sabaté G (eds) Jornades d’Arqueologia del Penedès, Institut d’Estudis Penedesencs, Vilafranca del Penedès: pp. 109–116Google Scholar
  65. Oms FX, Mestres J, Cebrià A, Morales JI, Nadal J, Pedro M, Mendiela S, Martín P, Fullola JM (2016b) La Cova de la Guineu (Font-Rubí, Barcelona) i les relacions plana-muntanya al Penedès durant el neolític inicial. In: Cabanilles JJ (ed) Del neolític a l’edat del bronze en el Mediterrani occidental. Estudis en homenatge a Bernat Martí Oliver., Servei d'Investigació Prehistòrica. Trabajos Varios n° 119, pp. 97–107Google Scholar
  66. Pérez-Romero A, Iriarte E, Galindo-Pellicena MA, García-González R, Rodríguez L, Castilla M, Francés-Negro M, Santos E, Valdiosera C, Arsuaga JL, Alday A, Carretero JM (2017) An unusual Pre-Bell Beaker copper age cave burial context from El Portalón de Cueva Mayor site (Sierra de Atapuerca, Burgos). Quat Int 433:142–155CrossRefGoogle Scholar
  67. Power RC, Salazar-García DC, Wittig RM, Henry AG (2014) Assessing use and suitability of scanning electron microscopy in the analysis of micro remains in dental calculus. J Archaeol Sci 49:160–169CrossRefGoogle Scholar
  68. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatt_e C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff, R.A, Turney CSM, Van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55(4):1869–1887CrossRefGoogle Scholar
  69. Richards MP, Hedges REM (1999) Stable isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic coast of Europe. J Archaeol Sci 26:717–722CrossRefGoogle Scholar
  70. Richards MP, Karavanić I, Pettitt P, Miracle P (2015) Isotope and faunal evidence for high levels of freshwater fish consumption by late glacial humans at the late upper palaeolithic site of Šandalja II, Istria, Croatia. J Archaeol Sci 61:204–212CrossRefGoogle Scholar
  71. Salazar-García DC (2011) Aproximación a la dieta de la población calcolítica de La Vital a través del análisis de isótopos estables del carbono y del nitrógeno sobre restos óseos. In: Pérez G, Bernabeu J, Carrión Y, García- Puchol O, Molina LL, Gómez M (eds) La Vital (Gandia, Valencia). Vida y muerte en la desembocadura del Serpis durante el III y el I milenio a.C. Museu de Prehistòria de València-Diputación de Valencia (T.V. 113), València, pp. 139–143Google Scholar
  72. Salazar-García DC (2014) Estudi de la dieta en la població de Cova dels Diablets mitjançant anàlisi d’isòtops estables del carboni i del nitrogen en collàgen ossi. Resultats preliminars. In: Aguilella Arzo GA, Monroig D, García-Borja P (eds) La Cova dels Diablets (Alcalà de Xivert, Castelló). Prehistòria a la Serra d’Irta. Diputació de la Castelló, Castellón, pp. 67–78Google Scholar
  73. Salazar-García DC, Power RC, Serra AS, Villaverde V, Walker MJ, Henry AG (2013a) Neanderthal diets in central and southeastern Mediterranean Iberia. Quat Int 318:3–18CrossRefGoogle Scholar
  74. Salazar-García DC, de Lugo Enrich LB, Alvarez García HJ, Benito Sánchez M (2013b) Estudio diacrónico de la dieta de los pobladores antiguos de Terrinches (Ciudad Real) a partir del análisis de isótopos estables sobre restos óseos humanos. REAF 34:6–14Google Scholar
  75. Salazar-García DC, Aura JE, Olária CR, Talamo S, Morales JV, Richards MP (2014) Isotope evidence for the use of marine resources in the eastern Iberian Mesolithic. J Archaeol Sci 42:231–240CrossRefGoogle Scholar
  76. Salazar-García DC, García-Puchol O, de Miguel-Ibañéz MP, Talamo S (2016a) Earliest evidence of neolithic collective burials from eastern Iberia: radiocarbon dating at the archaeological site of Les Llometes (Alicante, Spain). Radiocarbon 58(3):679–692CrossRefGoogle Scholar
  77. Salazar-García DC, Romero A, García-Borja P, Subirà ME, Richards MP (2016b) A combined dietary approach using isotope and dental buccal microwear analysis of human remains from the Neolithic, Roman and Medieval periods from the archaeological site of Tossal de les Basses (Alicante, Spain). J Archaeol Sci Rep 6:610–619Google Scholar
  78. Salazar-García DC, Pérez-Ripoll M, García-Borja P, Jordá Pardo JF (2017) A terrestrial diet close to the coast: a case study from the Neolithic levels of Nerja Cave (Málaga, Spain). In: García-Puchol O, Salazar-García C (eds) Times of Neolithic transition along the western Mediterranean. Fundamental issues in archaeology, Springer, pp. 281–307Google Scholar
  79. Saña M (2013) Domestication of animals in the iberian peninsula. Origins and spread of domestic animals in Southwest Asia and Europe, Left Coast Press, pp 195–22Google Scholar
  80. Sarasketa-Gartzia I, Villalba-Mouco V, le Roux P, Arrizabalaga Á, Salazar-García DC (2017) Late Neolithic-Chalcolithic socio-economical dynamics in northern Iberia. A multi-isotope study on diet and provenance from Santimamiñe and Pico Ramos archaeological sites (Basque Country, Spain). Quat IntGoogle Scholar
  81. Schoeninger MJ, DeNiro MJ (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Acta 48:625–639CrossRefGoogle Scholar
  82. Schuhmacher TX, Banerjee A (2012) Procedencia e intercambio de marfil en el Calcolítico de la Península Ibérica. Rubricatum: revista del Museu de Gavà 5:289–298Google Scholar
  83. Schulting RJ, Vaiglova P, Crozier R, Reimer PJ (2017) Further isotopic evidence for seaweed-eating sheep from Neolithic Orkney. J Archaeol Sci Rep 11:463–470Google Scholar
  84. Schwarcz HP, Schoeniger MJ (1991) Stable isotope analysis in human nutritional ecology. Yearb Phys Anthropol 34:283–321CrossRefGoogle Scholar
  85. Seibt U, Rajabi A, Griffiths H, Berry JA (2008) Carbon isotopes and water use efficiency: sense and sensivity. Oecologia 155:411–454CrossRefGoogle Scholar
  86. Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47(3):380–384CrossRefGoogle Scholar
  87. Stevens RE, Jacobi R, Street M, Germonpré M, Conard NJ, Münzel SC, Hedges RE (2008) Nitrogen isotope analyses of reindeer (Rangifer tarandus), 45,000 BP to 9,000 BP: Palaeoenvironmental reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 262(1):32–45CrossRefGoogle Scholar
  88. Szécsényi-Nagy A, Roth C, Brandt G, Rihuete-Herrada C, Tejedor-Rodríguez C, Held P, García-Martínez-de-Lagrán I, Arcusa Magallón H, Zesch S, Knipper C, Bánffy E, Friederich S, Meller H, Bueno P, Barroso R, Balbín R, Herrero- Corral AM, Flores R, Alonso C, Jiménez J, Rindlisbacher L, Oliart C, Fregeiro MI, Soriano I, Vicente O, Micó R, Lull V, Soler J, López JA, Roca de Togores C, Hernández MS, Jover FJ, Lomba J, Avilés A, Lillios KT, Silva AM, Magalhães M, Oosterbeek LM, Cunha C, Waterman AJ, Roig J, Martínez A, Ponce J, Hunt M, Mejías-García JC, Carlos Pecero JC, Cruz-Auñón R, Tomé T, Carmona E, Cardoso JL, Araújo AC, Liesau von Lettow-Vorbeck C, Blasco C, Ríos P, Pujante A, Royo-Guillén JI, Esquembre MA, Dos Santos VM, Parreira R, Morán E, Méndez E, Vega y Miguel J, Menduiña R, Martínez V, López O, Krause J, Pichlerf SL, Garrido-Pena R, Kunst M, Risch R, Rojo-Guerra MA, Haak W, Alt KW (2017) The maternal genetic make-up of the Iberian Peninsula between the Neolithic and the Early Bronze Age. Sci Rep 7:15644CrossRefGoogle Scholar
  89. Szpak P (2014) Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices. Front Plant Sci 5:288CrossRefGoogle Scholar
  90. Tieszen LL (1991) Natural variations in the carbon isotope values of plants: implications for archeology, ecology and paleoecology. J Archaeol Sci 18:227–248CrossRefGoogle Scholar
  91. Tornero C, Aguilera M, Ferrio JP, Arcusa H, Moreno-García M, Garcia-Reig S, Rojo-Guerra M (2016a) Vertical sheep mobility along the altitudinal gradient through stable isotope analyses in tooth molar bioapatite, meteoric water and pastures: a reference from the Ebro valley to the central Pyrenees. Quat IntGoogle Scholar
  92. Tornero C, Balasse M, Bălăşescu A, Chataigner C, Gasparyan B, Montoya C (2016b) The altitudinal mobility of wild sheep at the Epigravettian site of Kalavan 1 (Lesser Caucasus, Armenia): evidence from a sequential isotopic analysis in tooth enamel. J Hum Evol 97:27–36CrossRefGoogle Scholar
  93. Trautmann B, Wißing C, Díaz-Zorita M, Bis-Worch C, Bocherens H (2017) Reconstruction of socioeconomic status in the Medieval (14th-15th century) population of Grevenmacher (Luxembourg) based on growth, development and diet. Int J Osteoarchaeol 27:947–957CrossRefGoogle Scholar
  94. Ubelaker DH (1989) Human skeletal remains: excavation, analysis, interpretation. In: Manual on archaeology 2 Taraxacum, first ed. WashingtonGoogle Scholar
  95. Utrilla P, Mazo C, Lorenzo JI (2007) Enterramientos humanos en el Calcolítico de Abauntz. In: La tierra te sea leve. Arqueología de la Muerte en Navarra, pp. 66–72. Museo de NavarraGoogle Scholar
  96. Utrilla P, Laborda R, Sebastián M, (2014a) La reocupación de cuevas prehistóricas del Prepirineo oscense en época romana. Modelización mediante tig’s. In: Duplá A, Escribano MV, Sancho L, Villacampa MA (eds) Miscelánea de estudios en homenaje a Guillermo Fatás Cabeza, Institución Fernando el Católico, pp. 673–682Google Scholar
  97. Utrilla P, Mazo C, Lorenzo JI (2014b) Rituales funerarios en el calcolítico de Abauntz. Un ejemplo de lesión con supervivencia. Salduie 13-14, pp. 297–314Google Scholar
  98. Utrilla P, Mazo C, Domingo R (2015) Fifty thousand years of prehistory at the cave of Abauntz (Arraitz, Navarre): a nexus point between the Ebro valley, aquitaine and the cantabrian corridor. Quat Int 364:294–305CrossRefGoogle Scholar
  99. Valera AC, Silva AM, Romero JE (2014) The temporality of Perdigões enclosures: absolute chronology of the structures and social practices. SPAL 23:11–26CrossRefGoogle Scholar
  100. Van der Merwe NJ (1982) Carbon isotopes, photosynthesis, and archaeology: different pathways of photosynthesis cause characteristic changes in carbon isotope ratios that make possible the study of prehistoric human diets. Am Sci 70(6):596–606Google Scholar
  101. Van Klinken GJ (1999) Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J Archaeol Sci 26:687–695CrossRefGoogle Scholar
  102. Villalba-Mouco V, Sauqué V, Sarasketa-Gartzia I, Pastor MV, le Roux PJ, Vicente D, Utrilla P, Salazar-García DC (2017) Territorial mobility and subsistence strategies during the Ebro Basin Late Neolithic-Chalcolithic: a multi-isotope approach from San Juan cave (Loarre, Spain). Quat IntGoogle Scholar
  103. Villalba-Mouco V, Utrilla P, Laborda R, Lorenzo JI, Martínez-Labarga C, Salazar-García DC (2018) Reconstruction of human subsistence and husbandry strategies from the Iberian Early Neolithic: a stable isotope approach. Am J Phys AnthropolGoogle Scholar
  104. Vogel JC (1978) Recycling of carbon in a forest environment. Oecol Plant 13(1):89–94Google Scholar
  105. Waterman AJ, Peate DW, Silva AM, Thomas JT (2014) In search of homelands: using strontium isotopes to identify biological markers of mobility in late prehistoric Portugal. J Archaeol Sci 42:119–127CrossRefGoogle Scholar
  106. Waterman AJ, Tykot RH, Silva AM (2016) Stable isotope analysis of diet-based social differentiation at late prehistoric collective burials in south-western Portugal. Archaeometry 58(1):131–151CrossRefGoogle Scholar
  107. Weyrich LS, Duchene S, Soubrier J, Arriola L, Llamas B, Breen J, Morris AG, Alt KW, Caramelli D, Dresely V, Farrell M, Farrer AG, Francken M, Gully N, Haak W, Hardy K, Harvati K, Held P, Holmes EC, Kaidonis J, Lalueza-Fox C, de la Rasilla M, Rosas A, Semal P, Soltysiak A, Townsend G, Usai D, Wahl J, Huson DH, Dobney K, Cooper A (2017) Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544(7650):357–361CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ciencias de la Antigüedad, Grupo Primeros Pobladores del Valle del Ebro (PPVE), Instituto de Investigación en Ciencias Ambientales (IUCA)Universidad de ZaragozaZaragozaSpain
  2. 2.Departamento de Geografía, Prehistoria y ArqueologíaUniversidad del País Vasco-Euskal Herriko UnibertsitateaVitoria-GasteizSpain
  3. 3.Seminari d’Estudis i Recerques Prehistòriques (SERP), Secció de Prehistòria i ArqueologiaUniversitat de BarcelonaBarcelonaSpain
  4. 4.Departamento de Prehistoria, Arqueología, Historia Antigua, Historia Medieval y Ciencias y Técnicas HistoriográficasUniversidad de MurciaMurciaSpain
  5. 5.Grupo de Investigación en Prehistoria IT-622-13 (UPV-EHU)/IKERBASQUE-Basque Foundation for ScienceVitoriaSpain
  6. 6.Department of GeologyUniversity of Cape TownCape TownSouth Africa

Personalised recommendations