Advertisement

Archaeological and Anthropological Sciences

, Volume 11, Issue 4, pp 1491–1518 | Cite as

Petrographic and XRF analyses of andesitic cut stone blocks at Teotihuacan, Mexico: implications for the organization of urban construction

  • Tatsuya MurakamiEmail author
  • Matthew T. Boulanger
  • Michael D. Glascock
Original Paper

Abstract

This study presents preliminary results of petrographic and X-ray fluorescence analyses of cut stone blocks used for urban construction at Teotihuacan, the capital of a regional state in Central Mexico (ca. AD 150–650). Cut stone blocks were concentrated in the civic-ceremonial core of the city and were probably prestigious architectural elements due to their higher costs of procurement and transportation compared to alternative materials (boulders and clay amalgam). This suggests that the organization of stone block procurement and distribution was likely embedded in power relations between commissioners and mining groups. By combining multiple analytical methods that complement one another, this study was able to discriminate local (within 10–15 km radius) from non-local materials. The results suggest that the majority (> 80%) of andesitic cut stone blocks were brought from non-local sources. This paper discusses procurement organization and suggests that most rocks were quarried by specialized groups and brought to the city through a tribute system and/or patron-client relations. This has implications for understanding the nature of the urban-hinterland relationship and expansion of the Teotihuacan state.

Keywords

Cut stone blocks Procurement Petrography XRF Urbanism Teotihuacan Mesoamerica 

Notes

Acknowledgements

The lead author (Murakami) would like to thank the Consejo de Arqueologia for their permission to conduct research, as well as Alejandro Sarabia, the director of the Zona Arqueológica de Teotihuacan, for providing logistical support for archaeological sampling at Teotihuacan. The study presented in this paper was made possible by financial support from the National Science Foundation Dissertation Improvement Grant (BCS-0836716) awarded to Murakami and a National Science Foundation grant (0504015) awarded to MURR. Finally, we thank Chris Oswald for his assistance in the analysis of the samples by XRF and Alex Jurado for editing help for an earlier draft of this paper. Comments and suggestions by two anonymous reviewers greatly helped clarifying our argument and the scope of the paper.

Supplementary material

12520_2018_619_MOESM1_ESM.xlsx (47 kb)
ESM 1 (XLSX 47 kb)

References

  1. Abrams EM (1994) How the Maya built their world: energetics and ancient architecture. University of Texas Press, AustinGoogle Scholar
  2. Barba Pingarrón LA (2005) Materiales, técnicas y energía en la construcción de Teotihuacan. In: Gallut MER, Peralta JT (eds) Arquitectura y urbanismo: pasado y presente de los espacios en Teotihuacan. Memoria de la Tercera Mesa Redonda de Teotihuacan. Instituto Nacional de Antropología e Historia, Mexico City, pp 211–229Google Scholar
  3. Barba Pingarrón LA, Córdova Frunz JL (2010) Materiales y energía en la arquitectura de Teotihuacan. Instituto de Investigaciones Antropológicas, Universidad Nacional Autónoma de México, Mexico CityGoogle Scholar
  4. Barba Pingarrón LA, Blancas J, Manzanilla LR, Ortiz A, Barca D, Crisci GM, Miriello D, Pecci A (2009) Provenance of the limestone used in Teotihuacan (Mexico): a methodological approach. Archaeometry 51:525–545CrossRefGoogle Scholar
  5. Baxter MJ (1992) Archaeological uses of the biplot—a neglected technique? In: Lock G, Moffett J (eds) Computer applications and quantitative methods in archaeology, 1991, vol BAR International Series. Tempvs Reparatvm, Oxford, pp 141–148Google Scholar
  6. Baxter MJ, Buck CE (2000) Data handling and statistical analysis. In: Ciliberto E, Spoto G (eds) Modern analytical methods in art and archaeology. John Wiley and Sons, New York, pp 681–746Google Scholar
  7. Bieber AMJ, Brooks DW, Harbottle G, Sayre EV (1976) Application of multivariate techniques to analytical data on Aegean ceramics. Archaeometry 18:59–74CrossRefGoogle Scholar
  8. Bishop RL, Neff H (1989) Compositional data analysis in archaeology. In: Allen RO (ed) Archaeological chemistry IV, vol 220. Advances in chemistry. American Chemical Society, Washington, D.C., pp 576–586Google Scholar
  9. Biskowski MF (1997) The adaptive origins of Prehispanic markets in central mexico: the role of maize-grinding tools and related staple products in early state economies. Ph.D. diss. University of California, Los AngelesGoogle Scholar
  10. Carballo DM (2013) Labor collectives and group cooperation in Pre-Hispanic Central Mexico. In: Carballo DM (ed) Cooperation and collective action: archaeological perspectives. University Press of Colorado, Boulder, pp 243–274Google Scholar
  11. Carballo DM, Carballo J, Neff H (2007) Formative and Classic period obsidian procurement in Central Mexico: a compositional study using laser ablation-inductively coupled plasma-mass spectrometry. Lat Am Antiq 18:27–43.  https://doi.org/10.2307/25063084 CrossRefGoogle Scholar
  12. Clayton SC (2013) Measuring the long arm of the state: Teotihuacan's relations in the basin of Mexico. Anc Mesoam 24:87–105CrossRefGoogle Scholar
  13. Cowgill GL (2000) The central Mexican highlands from the rise of Teotihuacan to the decline of Tula. In: Adams REW, MacLeod MJ (eds) The Cambridge history of the native peoples of the Americas. Volume II: Mesoamerica, Part 1. Cambridge University Press, Cambridge, pp 250–317CrossRefGoogle Scholar
  14. Díaz Lozano E (1979) Rocas y minerales del valle. In: Gamio M (ed) La población del Valle de Teotihuacan, Tomo II. Instituto Nacional Indigenista, Mexico City, pp 27–66Google Scholar
  15. Garraty CP (2013) Market development and pottery exchange under Aztec and Spanish rule in Cerro Portezuelo. Anc Mesoam 24:151–176CrossRefGoogle Scholar
  16. Gillespie SD (1994) Llano de Jícaro: an Olmec monument workshop. Anc Mesoam 5:231–242CrossRefGoogle Scholar
  17. Glascock MD (1992) Characterization of archaeological ceramics at MURR by neutron activation analysis and multivariate statistics. In: Neff H (ed) Chemical characterization of ceramic pastes in archaeology. Prehistory Press, Madison, pp 11–26Google Scholar
  18. Glascock MD (2006) Tables for neutron activation analysis. The University of Missouri Research Reactor Center, ColumbiaGoogle Scholar
  19. Greenough JD, Gorton MP, Mallory-Greenough LM (2001) The major- and trace-element whole rock fingerprints of Egyptian basalts and the provenance of Egyptian artifacts. Geoarchaeology 16:763–784CrossRefGoogle Scholar
  20. Harbottle G (1976) Activation analysis in archaeology. Radiochemistry 3:33–72CrossRefGoogle Scholar
  21. Heizer RF, Williams H (1963) Geologic notes on the Idolo de Coatlichán. Am Antiq 29:95–98CrossRefGoogle Scholar
  22. Hernández Javier I (2007) Geología y geomorfología volcánica de la región de los yacimientos de obsidiana de Otumba en el sector norte de la Sierra Nevada de México. Tesis de licenciatura, Universidad Nacional Autónoma de MéxicoGoogle Scholar
  23. INEGI (1979) Carta geológica: Texcoco E14B21, Mexico y Tlaxcala, Escala 1:50,000. Instituto Nacional de Estadística, Geografía e Informática, Mexico CityGoogle Scholar
  24. Jones GT, Bailey DG, Beck C (1997) Source provenance of andesite artifacts using non-destructive analysis. J Archaeol Sci 24:929–943CrossRefGoogle Scholar
  25. Latham T, Sutton PA, Verosub KL (1992) Non-destructive XRF characterization of basaltic artifacts from Truckee, California. Geoarchaeology 7:81–101CrossRefGoogle Scholar
  26. López Luján L, Torres J, Montúfar A (2003) Los materiales constructivos del Templo Mayor de Tenochtitlan. Estudios de Cultura Náhuatl 34:137–166Google Scholar
  27. Margáin CR (1967) Sobre sistemas y materiales de construcción en Teotihuacan. In: XI Mesa Redonda. Sociedad Mexicana de Antropología, Mexico City, pp 157–211Google Scholar
  28. Millon R (1973) The Teotihuacan map. Part 1: text. Urbanization at Teotihuacan, Mexico, vol 1. University of Texas Press, AustinGoogle Scholar
  29. Millon R (1981) Teotihuacan: city, state, and civilization. In: Bricker V, Sabloff JA (eds) Supplement to the handbook of middle American Indians, vol.1: Archaeology. University of Texas Press, Austin, pp 198–243Google Scholar
  30. Minc LD (2009) Style and substance: evidence for regionalism within the Aztec market system. Lat Am Antiq 20:343–374CrossRefGoogle Scholar
  31. Mooser F (1968) Geología, naturaleza y desarrollo del Valle de Teotihuacan. In: Lorenzo JL (ed) Materiales para la arqueología de Teotihuacan, Serie Investigaciones XVII. Instituto Nacional de Antropología e Historia, Mexico City, pp 29–37Google Scholar
  32. Murakami T (2010) Power relations and urban landscape formation: a study of construction labor and resources at Teotihuacan. Ph.D. diss. Arizona State UniversityGoogle Scholar
  33. Murakami T (2015) Replicative construction experiments at Teotihuacan, Mexico: assessing the duration and timing of monumental construction. J Field Archaeol 40:263–282CrossRefGoogle Scholar
  34. Murakami T (2016) Materiality, regimes of value, and the politics of craft production, exchange, and consumption: a case of lime plaster at Teotihuacan. J Anthropol Archaeol 42:56–78CrossRefGoogle Scholar
  35. Neff H (1994) RQ-mode principal component analysis of ceramic compositional data. Archaeometry 36:115–130CrossRefGoogle Scholar
  36. Neff H (2000) Neutron activation analysis for provenance determination in archaeology. In: Ciliberto E, Spoto G (eds) Modern analytical methods in art and archaeology. John Wiley and Sons, New York, pp 81–134Google Scholar
  37. Neff H (2002) Quantitative techniques for analyzing ceramic compositional data. In: Glowacki DM, Neff H (eds) Ceramic source determination in the greater Southwest. Monograph 44. Cotsen Institute of Archaeology, Los Angeles, pp 15–36Google Scholar
  38. Neff H, Glascock MD, Charlton TH, Charlton CO, Nichols DL (2000) Provenience investigation of ceramics and obsidian from Otumba. Anc Mesoam 11:307–321CrossRefGoogle Scholar
  39. Ogburn DE (2004) Evidence for long-distance transportation of building stones in the Inka empire, from Cuzco, Peru to Saraguro. Ecuador Lat Am Antiq 15:419–439CrossRefGoogle Scholar
  40. Pastrana A, Domínguez S (2009) Cambios en la estrategia de la explotación de la obsidiana de Pachuca: Teotihuacan, Tula y la Triple Alianza. Anc Mesoam 20:129–148.  https://doi.org/10.1017/S0956536109000133 CrossRefGoogle Scholar
  41. Quezada Ramírez ON (2016) El Templo Mayor de Tenochtitlan: sistemas, materiales y técnicas constructivas. Tesis de licenciatura. Escuela Nacional de Antropología e Historia, Mexico CityGoogle Scholar
  42. Quezada Ramírez O, Pascal C, López AG (2018) De la cantera a Tenochtitlan: Presencia de rocas de origen volcánico en la construcción y la escultura del Templo Mayor. La explotación de andesita en la cantera de San Bartola Tenayuca, una aproximación etnoarqueológica. Mexico CityGoogle Scholar
  43. Robles García NM (1992) La extracción y talla de cantera en Mitla, Oaxaca. Tecnología para la arquitectura monumental. Arqueología 2(7):85–112Google Scholar
  44. Sarro PJ (1991) The role of architectural sculpture in ritual space at Teotihuacan, Mexico. Anc Mesoam 2:249–262CrossRefGoogle Scholar
  45. Schaaf P, Stimac J, Siebe C, Macías JL (2005) Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatepetl and surrounding monogenetic volcanoes, Central Mexico. J Petrol 46:1243–1282CrossRefGoogle Scholar
  46. Sotomayor Castañeda A (1968) Estudio petrográfico del area de San Juan Teotihuacan, Edo. de México. In: Lorenzo JL (ed) Materiales Para la Arqueología de Teotihuacan, Serie Investigaciones XVII. Instituto Nacional de Antropología e Historia, Mexico City, pp 39–49Google Scholar
  47. Sugiyama S (2005) Human sacrifice, militarism, and rulership: materialization of state ideology at the feathered serpent pyramid, Teotihuacan. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  48. Vázquez-Sánchez E, Jaimes-Palomera R (1989) Geología de la Cuenca de México. Geofis Int 28:133–190Google Scholar
  49. Williams-Thorpe O, Thorpe RS (1993) Geochemistry and trade of eastern Mediterranean millstones from the Neolithic to Roman periods. J Archaeol Sci 20:263–320CrossRefGoogle Scholar
  50. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:235–343CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tatsuya Murakami
    • 1
    Email author
  • Matthew T. Boulanger
    • 2
  • Michael D. Glascock
    • 3
  1. 1.Department of AnthropologyTulane UniversityNew OrleansUSA
  2. 2.Department of AnthropologySouthern Methodist UniversityDallasUSA
  3. 3.Archaeometry LaboratoryUniversity of Missouri Research Reactor CenterColumbiaUSA

Personalised recommendations