Advertisement

Archaeological and Anthropological Sciences

, Volume 11, Issue 4, pp 1519–1531 | Cite as

Polished stone axes from Varna/Nössingbühel and Castelrotto/Grondlboden, South Tyrol (Italy)

  • F. BernardiniEmail author
  • A. De Min
  • D. Lenaz
  • Zs. Kasztovszky
  • V. Lughi
  • V. Modesti
  • C. Tuniz
  • U. Tecchiati
Original Paper
  • 84 Downloads

Abstract

A collection of polished stone axes from a late Neolithic site and an Early Bronze Age hill fort in South Tyrol (Italy) have been analysed through a multi-analytical approach, mainly based on non-destructive techniques (i.e. Raman spectroscopy, X-ray fluorescence and prompt gamma activation analysis) to identify the raw materials used in the same area during different periods and compare them with those in use in the surrounding territories. The analytical results suggest raw material exploitation strategies based on local or close sedimentary, metamorphic and magmatic rocks. Most of the artefacts are made from antigoritic serpentinite, whose origin is probably from Hohe Tauern (Austria) or related secondary deposits. These data confirm the importance of such raw material for the production of polished stone axes during recent prehistory and integrate the present knowledge about the distribution of antigoritic artefacts in north-eastern Italy and neighbouring countries.

Keywords

Polished stone axes South Tyrol (northern Italy) Late Neolithic Early Bronze Age Mineralogical and chemical characterisation Provenance 

Notes

Acknowledgments

The authors are grateful to M. Di Giovannantonio for reviewing the draft and to Gianni Santuari, Laboratorio fotografico e di restauro dell’Ufficio Beni archeologici di Bolzano, for the pictures of the axes.

References

  1. Benciolini L, Poli EM, Visonà D, Zanferrari A (2001) The Funes/Villnoess basin: an example of early Permian tectonics, magmatism and sedimentation in the Eastern Southern Alps (NE Italy). Natura Bresciana 25:133–138Google Scholar
  2. Bernardini F, De Min A, Demarchi G, Montagnari Kokelj E, Velušček A, Komšo D (2009) Shaft-hole axes from Slovenia and north western Croatia: a first archaeometric study on artefacts manufactured from meta-dolerites. Archaeometry 51(6):894–912CrossRefGoogle Scholar
  3. Bernardini F, De Min A, Eichert D, Alberti A, Demarchi G, Montagnari Kokelj E, Velušček A, Tuniz C (2011a) Shaft-hole axes from Caput Adriae: mineralogical and chemical constraints about the provenance of serpentinitic artefacts. Archaeometry 53(2):261–284CrossRefGoogle Scholar
  4. Bernardini F, Eichert D, Lenaz D, De Min A, Tuniz C, Velušček A, Montagnari Kokelj E (2011b) Synchrotron FTIR micro-spectroscopy applied to the study of polished serpentinite artefacts: a non-destructive analytical approach. Archaeometry 53(4):753–764CrossRefGoogle Scholar
  5. Bernardini F, De Min A, Lenaz D, Kasztovszky Z, Turk P, Velušček A, Szilágyi V, Tuniz C, Montagnari Kokelj E (2014a) Mineralogical and chemical constraints about the provenance of Copper Age polished stone axes of “Ljubljana type” from Caput Adriae. Archaeometry 56(2):175–202CrossRefGoogle Scholar
  6. Bernardini F, De Min A, Lenaz D, Kasztovszky Z, Turk P, Velušček A, Tuniz C, Montagnari Kokelj E (2014b) Petrographic and geochemical comparison between the Copper Age “Ljubljana type” axes and similar lithotypes from Eisenkappler Diabaszug complex (southern Austria). J Archaeol Sci 41:511–522CrossRefGoogle Scholar
  7. Bernardini F, De Min A, Lenaz D, Šída P, Tuniz C, Montagnari Kokelj E (2012) Shaft-hole axes from Caput Adriae made from amphibole-rich metabasites: evidence of connections between northeastern Italy and central Europe during the fifth millennium BC. Archaeometry 54(3):427–441CrossRefGoogle Scholar
  8. Bernardini F, Sibilia E, Kasztovszky ZS, Boscutti F, De Min A, Lenaz D, Turco G, Micheli R, Tuniz C (2017) Evidence of open-air late prehistoric occupation in the Trieste area (North-eastern Italy): dating, 3D clay plaster characterization and obsidian provenancing. Archaeol Anthropol Sci doi: https://doi.org/10.1007/s12520-017-0504-7
  9. Bloise A, Punturo R, Catalano M, Miriello D, Cirrincione R (2016) Naturally occurring asbestos (NOA) in rock and soil and relation with human activities: the monitoring example of selected sites in Calabria (southern Italy). Ital J Geosci 135:268–279CrossRefGoogle Scholar
  10. Choi HD, Firestone RB, Lindstrom RM, Molnár GL, Mughabghab SF, Paviotti-Corcuera R, Zs R, Trkov A, Zerkin V, Chunmei Z (2007) Database of prompt gamma rays from slow neutron capture for elemental analysis. International Atomic Energy Agency, ViennaGoogle Scholar
  11. D’Amico C, Starnini E (2006) Prehistoric polished stone artefacts in Italy: a petrographic and archaeological assessment. In: Maggetti M, Messiga B (eds) Geomaterials in Cultural Heritage. Geological Society 257, Special Publications, London, pp 257–272Google Scholar
  12. Del Moro A, Dal Piaz GV, Martin S, Venturelli G (1981) Dati radiometrici e geochimici preliminari su magmatiti oligoceniche del settore meridionale del massiccio Ortles-Cevedale. Rendiconti della Società Geologica Italiana 4:265–266Google Scholar
  13. de Marinis RC (1999) Towards a relative and absolute chronology of the Bronze Age in Northern Italy. Notizie Archeologiche Bergomensi 7:23–100Google Scholar
  14. Favaretto I (1974) Terza e ultima campagna di scavo nel castelliere Nössing di Bressanone. In: Atti dell’Istituto Veneto di Scienze, Lettere ed Arti, a.a. 1973–74, Tomo CXXXII Classe di Scienze morali, lettere ed arti. Stamperia di Venezia, Venezia, pp 541–553Google Scholar
  15. Kasztovszky Z, Biró KT, Markó A, Dobosi V (2008) Cold neutron prompt gamma activation analysis—a non-destructive method for characterisation of high silica content chipped stone tools and raw materials. Archaeometry 50(1):12–29Google Scholar
  16. Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks. Blackwell Scientific Publications, OxfordGoogle Scholar
  17. Leonardi P (1967) Le Dolomiti. Geologia dei monti tra Isarco e Piave. Consiglio nazionale delle ricerche, TrentoGoogle Scholar
  18. Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. American J of Sci 274:321–355CrossRefGoogle Scholar
  19. Pétrequin P, Cassen S, Errera M, Klassen L, Sheridan A, Pétrequin AM (eds) (2012) JADE. Grandes haches alpines du Néolithique européen, Ve au IVe millénaires av. J.-C. Presses Universitaires de Franche-Comté, Centre de Recherche Archéologique de la Vallée de l’Ain, BesançonGoogle Scholar
  20. Petriglieri JR, Salvioli-Mariani E, Mantovani L, Tribaudino M, Lottici PP, Laporte-Magoni C, Bersani D (2015) Micro-Raman mapping of the polymorphs of serpentine. J Raman Spectrosc 46:953–958CrossRefGoogle Scholar
  21. Polacco L, Favaretto I, Calzavara Capuis L (1967) Ricerche e scavi in Alto Adige. Campagna 1966 (Relazione preliminare). In: Atti dell’XI e XII Riunione Scientifica dell’Istituto Italiano di Preistoria e Protostoria. pp 77–98Google Scholar
  22. Polacco L, Favaretto I, Calzavara Capuis L (1969) Ricerche e scavi in Alto Adige. Campagna 1967 (Relazione preliminare). In: Atti dell’Istituto Veneto di Scienze, Lettere ed Arti, a.a. 1968/69, Tomo CXXVII, Classe di Scienze morali, lettere ed arti. Stamperia di Venezia, Venezia, pp 185–210Google Scholar
  23. Potts PJ, Webb PC, Williams-Thorpe O (1997) Investigation of a correction procedure for surface irregularity effects based on scatter peak intensities in the field analysis of geological and archaeological rock samples by portable X-ray fluorescence spectrometry. J. Anal Atom Spectrom 127:769–776CrossRefGoogle Scholar
  24. Rageth J (1974) Der Lago di Ledro im Trentino und seine Beziehungen zu den alpinen und mitteleuropäischen Kulturen. Bericht der Römisch-Germanischen Kommission 55:73–259Google Scholar
  25. Révay ZS, Belgya T (2004) Principles of PGAA method. In: Molnár GL (ed) Handbook of prompt gamma activation analysis with neutron beams. Kluwer Academic Publishers, Dordrecht/Boston/New York, pp 1–30Google Scholar
  26. Révay ZS (2009) Determining elemental composition using prompt gamma activation analysis. Anal Chem 81:6851–6859CrossRefGoogle Scholar
  27. Révay Z, Belgya T, Molnár GL (2005) Application of Hypermet-PC in PGAA. J Radioanal Nucl Chem 265:261–265CrossRefGoogle Scholar
  28. Rinaudo C, Gastaldi D, Belluso E (2003) Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. Can Mineral 41:883–890CrossRefGoogle Scholar
  29. Rizzi F (1996-1997) Manifestazioni filoniane nell’Alto Adige occidentale: aspetti geochimici e petrologici. Degree thesis, University of TriesteGoogle Scholar
  30. Salzani L (1996) Industria in pietra levigata negli abitati dell’età del Bronzo del Veneto occidentale. In: Venturino Gambari M (ed) Le vie della pietra verde. Omega edizioni, Torino, pp 239–246Google Scholar
  31. Szakmány G, Kasztovszky Z, Szilágyi V, Starnini E, Friedel O, Biró KT (2011) Discrimination of prehistoric polished stone tools from Hungary with non-destructive chemical prompt gamma activation analyses (PGAA). Eur J Mineralogy 23:883–893CrossRefGoogle Scholar
  32. Szentmiklósi L, Belgya T, Révay Zs KZ (2010) Upgrade of the prompt gamma activation analysis and the neutron-induced prompt gamma spectroscopy facilities at the Budapest research reactor. J Radioanal Nucl Chem 286:501–505CrossRefGoogle Scholar
  33. Tecchiati U (2007) Kastelruth–Grondlboden. Denkmalpflege in Südtirol 2007:222–224Google Scholar
  34. Tecchiati U (2008) Kastelruth–Grondlboden. Denkmalpflege in Südtirol 2008:178–180Google Scholar
  35. Tuniz C, Bernardini F, Cicuttin A, Crespo ML, Dreossi D, Gianoncelli A, Mancini L, Mendoza Cuevas A, Sodini N, Tromba G, Zanini F, Zanolli C (2013) The ICTP-Elettra X-ray laboratory for cultural heritage and archaeology. Nuclear Instruments Methods Res A 711:106–110CrossRefGoogle Scholar
  36. Zhao HX, Li QH, Liu S (2016) Investigation of some Chinese jade artifacts (5000 BC to 771 BC) by confocal laser micro-Raman spectroscopy and other techniques. J Raman Spectrosc 47:545–552CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • F. Bernardini
    • 1
    • 2
    Email author
  • A. De Min
    • 3
  • D. Lenaz
    • 3
  • Zs. Kasztovszky
    • 4
  • V. Lughi
    • 5
  • V. Modesti
    • 6
  • C. Tuniz
    • 2
    • 1
    • 7
  • U. Tecchiati
    • 8
  1. 1.Centro FermiMuseo Storico della Fisica e Centro di Studi e Ricerche “Enrico Fermi”RomeItaly
  2. 2.Multidisciplinary LaboratoryThe “Abdus Salam” International Centre for Theoretical PhysicsTriesteItaly
  3. 3.Department of Mathematics and GeosciencesUniversity of TriesteTriesteItaly
  4. 4.Nuclear Analysis and Radiography DepartmentMTA Centre for Energy ResearchBudapestHungary
  5. 5.Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly
  6. 6.Department of History, Humanities and SocietyUniversity of Rome “Tor Vergata”RomeItaly
  7. 7.Centre for Archaeological ScienceUniversity of WollongongWollongongAustralia
  8. 8.Soprintendenza Provinciale ai Beni culturali di Bolzano, Alto AdigeUfficio Beni archeologiciBolzanoItaly

Personalised recommendations