Archaeological and Anthropological Sciences

, Volume 11, Issue 1, pp 279–291 | Cite as

Unravelling provenance and recycling of late antique glass from Cyprus with trace elements

  • Andrea CegliaEmail author
  • Peter Cosyns
  • Nadine Schibille
  • Wendy Meulebroeck
Original Paper


Earlier research has shown that several common late antique glass types circulate in Cyprus between the fifth and the seventh century AD, specifically Levantine 1, HLIMT, HIMTa, HIMTb and Egypt 1, HIT, Roman and a plant ash glass. By investigating the glass material from Yeroskipou-Agioi Pente, Maroni-Petrera, and Kalavasos-Kopetra, we aimed to refine the chemical groups present within three late antique Cypriot sites and define the relations between trace elements obtained from LA-ICP-MS. Our data demonstrate compositional patterns that can be exploited to provenance late antique glass by investigating the REE-bearing mineral fractions, the amount of zircon and the carbonaceous fraction of the sand. In addition, Nb and Ti display a strong linear relation which depends on the glass type. Finally, the paper discusses the occurrence of glass recycling on the island and how this activity influenced the concentration levels of specific trace elements. Our study thus sets out an analytical framework to identify recycling events tailored on each compositional type.


Archaeological glass Cyrpus Late-antiquity LA-ICP-MS 



The authors are thankful to the Department of Antiquities for providing access to the material. In particular, we wish to express our gratitude to Prof. Demetrios Michealides, Prof. Marcus Rautman and Prof. Sturt Manning for having granted us permission to study the material they excavated. We would like to thank also Bernard Gratuze for helping with the LA-ICP-MS measurements. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 647315 to NS) and from the FWO Research Foundation Flanders (FWOTM744 postdoctoral grant to PC). The funding organizations had no influence in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Supplementary material

12520_2017_542_MOESM1_ESM.xlsx (213 kb)
(XLSX 212 KB)


  1. Aerts A, Velde B, Janssens K, Dijkman W (2003) Change in silica sources in roman and post-roman glass. Spectrochim Acta B At Spectrosc 58(4):659–667. CrossRefGoogle Scholar
  2. Bonnerot O, Ceglia A, Michaelides D (2016) Technology and materials of early christian cypriot wall mosaics. J Archaeol Sci Rep 7:649–661. CrossRefGoogle Scholar
  3. Brems D, Degryse P (2014) Trace element analysis in provenancing roman glass-making. Archaeometry 56:116–136. CrossRefGoogle Scholar
  4. Brill RH (1999) Chemical analyses of early glasses. Corning Museum of Glass, New YorkGoogle Scholar
  5. Bugoi R, Alexandrescu CG, Panaite A (2016) Chemical composition characterization of ancient glass finds from troesmis—turcoaia, romania. Archaeol Anthropol Sci.
  6. Cagno S, Favaretto L, Mendera M, Izmer A, Vanhaecke F, Janssens K (2012) Evidence of early medieval soda ash glass in the archaeological site of san genesio (Tuscany). J Archaeol Sci 39(5):1540–1552. CrossRefGoogle Scholar
  7. Ceglia A (2014) Shedding light on the glass industry of ancient cyprus: archaeological questions, methodology and preliminary results. In: Kassianidou V, Dikomitou M (eds) The NARNIA project: integrating approaches to ancient material studies, Nicosia, pp 85–93Google Scholar
  8. Ceglia A, Cosyns P, Nys K, Terryn H, Thienpont H, Meulebroeck W (2015a) Late antique glass distribution and consumption in cyprus: a chemical study. J Archaeol Sci 61:213–222. CrossRefGoogle Scholar
  9. Ceglia A, Nuyts G, Meulebroeck W, Cagno S, Silvestri A, Zoleo A, Nys K, Janssens K, Thienpont H, Terryn H (2015b) Iron speciation in soda-lime-silica glass: a comparison of XANES and UV-vis-NIR spectroscopy. J Anal At Spectrom 30(7):1552–1561. CrossRefGoogle Scholar
  10. Ceglia A, Cosyns P, Nys K, Terryn H, Thienpont H, Meulebroeck W (2016) Light through glass: the spectrum of late antique glass from cyprus. J Archaeol Sci Rep 7:614–624. Google Scholar
  11. Cholakova A, Rehren T, Freestone IC (2016) Compositional identification of 6th c. AD glass from the lower danube. J Archaeol Sci Rep 7:625–632. CrossRefGoogle Scholar
  12. Conte S, Chinni T, Arletti R, Vandini M (2014) Butrint (albania) between eastern and western mediterranean glass production: EMPA and LA-ICP-MS of late antique and early medieval finds. J Archaeol Sci 49:6–20. CrossRefGoogle Scholar
  13. De Francesco AM, Scarpelli R, Barca D, Ciarallo A, Buffone L (2010) Preliminary chemical characterization of Roman glass from Pompeii. Periodico di Mineralogia 79(3):11–19. Google Scholar
  14. Degryse P (2014) Glass making in the Greco-Roman world. Leuven Unversity Press, LeuvenGoogle Scholar
  15. Degryse P, Boyce A, Erb-Satullo N, Eremin K, Kirk S, Scott R, Shortland AJ, Schneider J, Walton M (2010) Isotopic discriminants between late bronze age glasses from Egypt and the near east. Archaeometry 52(3):380–388. CrossRefGoogle Scholar
  16. Dussubieux L, Golitko M, Gratuze B (2016) Recent advances in laser ablation ICP-MS for archaeology. Springer, BerlinCrossRefGoogle Scholar
  17. Fleischer M, Murata KJ, Fletcher JD, Narten PF (1952) Geochemical association of niobium (columbium) and titanium and its geological and economic significance. Geological Survey Circular. U.S. Geological Survey, WashingtonGoogle Scholar
  18. Foster HE, Jackson CM (2010) The composition of late Romano-British colourless vessel glass: glass production and consumption. J Archaeol Sci 37(12):3068–3080. CrossRefGoogle Scholar
  19. Foy D, Picon M, Vichy M, Thirion-Merle V (2003) Caracterisation des verres de la fin de l’antiquite en mediterranee occidentale: l’emergence de nouveaux courants commerciaux. In: Foy D, Nenna MD (eds) ÉChanges et commerce du verre dans le monde antique, Actes du colloque de l’Association Française pour l’Archéologie du Verre, Maison de l’Orient et de la Méditerranée Jean Pouilloux, Aix-en-Provence et Marseille , pp 41–85Google Scholar
  20. Freestone IC (2015) The recycling and reuse of roman glass: analytical approaches. Journal of Glass Studies 78(3):1–12Google Scholar
  21. Freestone IC, Hughes MJ (2000) Primary glass from Israel and the production of glass in late antiquity and the early islamic period. In: Marie-Dominique N (ed) La route du verre. Ateliers primaires et secondaires du second millénaire av. J.-C. au Moyen Âge, Maison de l’Orient et de la Méditerranée Jean Pouilloux, Lyon, pp 65–83.{_}1274-6525{_}2000{_}act{_}33{_}1{_}1874
  22. Freestone IC, Ponting M, Hughes MJ (2002) The origins of Byzantine glass from Maroni Petrera, Cyprus. Archaeometry 44(2):257–272. CrossRefGoogle Scholar
  23. Ganio M, Boyen S, Brems D (2012) Trade routes across the Mediterranean: a Sr/Nd isotopic investigation on Roman colourless glass. Glass Technol Eur J Glass Sci Technol Part A 53(5):217–224. Google Scholar
  24. Gliozzo E, Lepri B, Saguì L, Turbanti Memmi I (2015) Colourless glass from the palatine and esquiline hills in Rome (Italy). New data on antimony- and manganese-decoloured glass in the roman period. Archaeol Anthropol Sci.
  25. Gliozzo E, Turchiano M, Giannetti F, Memmi I (2016) Late antique and early medieval glass vessels from Faragola (Italy). Archaeometry 58:113–147. CrossRefGoogle Scholar
  26. Gratuze B (2014) Application de la spectrométrie de masse à plasma avec prélèvement par ablation laser (LA-ICP-MS) à l’étude des recettes de fabrication et de la circulation des verres anciens. In: Dillmann P, Bellot-Gurlet L (eds) Circulation des matériaux et des objets dans les sociétés anciennes, Edition des archives contemporaines, Paris, pp 243–272Google Scholar
  27. Gratuze B (2016) Glass characterization using laser ablation-inductively coupled plasma-mass spectrometry methods. In: Dussubieux L, Golitko M, Bernard G (eds) Recent advances in laser ablation ICP-MS for archaeology. Series: natural science in archaeology. Springer, Berlin, pp 179–196.
  28. Jackson CM (1996) From Roman to early medieval glasses. Many happy returns or a new birth? In: Annales du 13e congrès de l’Histoire du Verre (AIHV), Lochem, pp 289–301Google Scholar
  29. Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand Geoanal Res 35(4):397–429. CrossRefGoogle Scholar
  30. Kamber BS, Greig A, Collerson KD (2005) A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochim Cosmochim Acta 69(4):1041–1058. CrossRefGoogle Scholar
  31. Maltoni S, Silvestri A (2016) Innovation and tradition in the fourth century mosaic of the casa delle bestie ferite in aquileia, italy: archaeometric characterisation of the glass tesserae. Archaeol Anthropol Sci.
  32. Maltoni S, Silvestri A, Marcante A, Molin G (2016) The transition from roman to late antique glass: new insights from the domus of Tito Macro in Aquileia (Italy). J Archaeol Sci 73:1–16. CrossRefGoogle Scholar
  33. Meisser N, Perseil EA, Brugger J, Chiappero PJ (1999) Strontiomelane, SrMn4 + 6Mn3 + 2O16, a new mineral species of the cryptomelane group from St. Marcel - Praborna, Aosta Valley, Italy. Can Mineral 37(3):673–678Google Scholar
  34. Nenna MD (2014) Egyptian glass abroad: HIMT glass and its markets. In: Keller D, Price J, Jackson CM (eds) Neighbours and successors of rome: traditions of glass production and use in europe and the middle east in the later 1st millennium AD, Oxbow Books, York, May 2017, pp 177–193Google Scholar
  35. Paynter S (2006) Analyses of colourless Roman glass from Binchester, County Durham. J Archaeol Sci 33:1037–1057. CrossRefGoogle Scholar
  36. Phelps M, Freestone IC, Gorin-Rosen Y, Gratuze B (2016) Natron glass production and supply in the late antique and early medieval near east: the effect of the byzantine-islamic transition. J Archaeol Sci 75:57–71. CrossRefGoogle Scholar
  37. Rehren T, Cholakova A (2010) The early byzantine HIMT glass from Dichin, Northern Bulgaria. Interdisciplinary studies - Sofia 22–23:81–96Google Scholar
  38. Rehren T, Connolly P, Schibille N, Schwarzer H (2015) Changes in glass consumption in Pergamon (Turkey) from Hellenistic to late byzantine and islamic times. J Archaeol Sci 55:266–279. CrossRefGoogle Scholar
  39. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) Treatise on geochemistry, vol 3, pp 1–64Google Scholar
  40. Schibille N, Meek A, Tobias B, Entwistle C, Avisseau-Broustet M, Da Mota H, Gratuze B (2016a) Comprehensive chemical characterisation of byzantine glass weights. PLOS ONE 11(12):e0168,289. CrossRefGoogle Scholar
  41. Schibille N, Sterrett-Krause A, Freestone IC (2016b) Glass groups, glass supply and recycling in late roman carthage. Archaeol Anthropol Sci.
  42. Shortland AJ, Rogers N, Eremin K (2007) Trace element discriminants between egyptian and mesopotamian late bronze age glasses. J Archaeol Sci 34(5):781–789. CrossRefGoogle Scholar
  43. Silvestri A (2008) The coloured glass of iulia felix. J Archaeol Sci 35(6):1489–1501. CrossRefGoogle Scholar
  44. Silvestri A, Molin G, Salviulo G (2008) The colourless glass of iulia felix. J Archaeol Sci 35(2):331–341. CrossRefGoogle Scholar
  45. Silvestri A, Dotsika E, Longinelli A, Selmo E, Doukata-Demertzi S (2017) Chemical and oxygen isotopic composition of roman and late antique glass from northern greece. J Chem 2017(2956075):1–14. CrossRefGoogle Scholar
  46. Vicenzi EP, Logan A (2002) Archeological reference glasses: new additions to the smithsonian. J Res Natl Bur Stand 107(6):719–727Google Scholar
  47. Wagner B, Nowak A, Bulska E, Hametner K, Gu̇nther D (2012) Critical assessment of the elemental composition of Corning archeological reference glasses by LA-ICP-MS. Anal Bioanal Chem 402(4):1667–1677. CrossRefGoogle Scholar
  48. Walton M, Shortland AJ, Kirk S, Degryse P (2009) Evidence for the trade of mesopotamian and egyptian glass to mycenaean greece. J Archaeol Sci 36(7):1496–1503. CrossRefGoogle Scholar
  49. Wedepohl KH (2000) The use of marine molluskan shells for Roman glass and local raw glass production in the Eifel area (Western Germany). Die Naturwissenschaften 87:129–132. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Applied Physics and Photonics, B-PHOT groupVrije Universiteit BrusselBrusselsBelgium
  2. 2.Department of Art Sciences and Archaeology, MARI research groupVrije Universiteit BrusselBrusselsBelgium
  3. 3.IRAMAT-CEB, UMR 5060CNRSOrléans Cedex 2France

Personalised recommendations