Advertisement

Archaeological and Anthropological Sciences

, Volume 11, Issue 1, pp 33–49 | Cite as

Multi-isotope proveniencing of human remains from a Bronze Age battlefield in the Tollense Valley in northeast Germany

  • T. Douglas PriceEmail author
  • Robert Frei
  • Ute Brinker
  • Gundula Lidke
  • Thomas Terberger
  • Karin Margarita Frei
  • Detlef Jantzen
Original Paper

Abstract

Although the Bronze Age is best known for its remarkable metal weapons, there is little evidence of conflict. Traumatic wounds in human skeletal remains are rare, and there have been few recognized scenes of warfare such as those known from later periods. Recent discoveries, however, have revealed evidence of a major battle in a small valley in the northeast of Germany, some 3250 years ago. Both military equipment and human and animal remains have been encountered in surveys and excavations along almost 3 km of the Tollense Valley. More than 130 human individuals have been recovered in the investigations, for the most, part young men between 20 and 40 years of age. In addition, horse bones have been found among the human remains in the riverbed and banks. This study reports on the isotopic proveniencing of the excavated remains utilizing strontium, lead, oxygen, and carbon isotopes to learn about place of origin and past diet. Two major groups can be distinguished in the isotope data, along with evidence for different homelands for some of the individuals who died in the Tollense Valley.

Keywords

Bronze Age Isotopic proveniencing Strontium Lead Oxygen Carbon Battlefield 

Notes

Acknowledgements

We would like to thank James Burton (University of Wisconsin-Madison), Paul Fullagar (University of North Carolina—Chapel Hill), and David Dettman (University of Arizona) for their care and attention to sample preparation, Sr and C/O isotope measurements, respectively. We also thank Cristina Nora Jensen and Toby Leeper (University of Copenhagen), respectively, for assistance with ion chromatographic separations of Pb and for keeping the three TIMS instruments in excellent running condition. We would also like to thank the DFG (German Research Foundation) for the financial support of the Tollense Valley project.

Supplementary material

12520_2017_529_MOESM1_ESM.docx (987 kb)
ESM 1 (DOCX 987 kb)

References

  1. Backström Y, Price TD (2016) Social identity and mobility at an early pre-industrial mining complex, Sweden. J Archaeol Sci 66:154–168CrossRefGoogle Scholar
  2. Bacon JR, Jones KC, McGrath SP, Johnston AE (1996) Isotopic character of lead deposited from the atmosphere at a grassland site in the United Kingdom since 1860. Environ Sci Technol 30:2511–2518CrossRefGoogle Scholar
  3. Becker C, Grupe G (2012) Archaeometry meets archaeozoology: Viking Haithabu and medieval Schleswig reconsidered. J Anthropol Archaeol Sci 4:241–262CrossRefGoogle Scholar
  4. Bell LS, Lee Thorp JA, Elkerton A (2009) The sinking of the Mary Rose warship: a medieval mystery solved? J Archaeol Sci 36:166–173CrossRefGoogle Scholar
  5. Brinker U, Schramm A, Flohr S, Jantzen D, Piek J, Hauenstein K, Orschiedt J (2016) The Bronze Age battlefield in the Tollense Valley, Mecklenburg-Western Pomerania, Northeast Germany—combat marks on human bones as evidence of early warrior societies in Northern Middle Europe? In Later prehistory to the Bronze Age. 1. The emergence of warrior societies and its economic, social and environmental consequences. 2. Imports and Aegeo-Mediterranean Influences on the Continental European Tombs in the Bronze and Iron Ages. Proceedings of the XVII UISPP World Congress (1–7 September 2014, Burgos, Spain) Vol. 9 / Sessions A3c and A16a, Coimbra F, Delfino D, Sirbu V, Schuster C (eds.), pp. 39–56. Oxford: Archaeopress ArchaeologyGoogle Scholar
  6. Budd P, Montgomery J, Evans J, Barreir B (2000) Human tooth enamel as a record of the comparative lead exposure of prehistoric and modern people. Sci Total Environ 263:1–10CrossRefGoogle Scholar
  7. Budd P, Montgomery J, Evans J, Trickett M (2004) Human lead exposure in England from approximately 5500 BP to the 16th century AD. Sci Total Environ 318:45–58CrossRefGoogle Scholar
  8. Dombrowsky A (2014) Bronzezeitliche Metallfunde aus dem Gebiet der mittleren Tollense unter besonderer Berücksichtigung der Flussfunde. In 2014. Tod im Tollensetal—Forschungen zu den Hinterlassenschaften eines bronzezeitlichen Gewaltkonfliktes in Mecklenburg-Vorpommern 1. In: Jantzen D, Orschiedt J, Piek J, Terberger T (eds) Beiträge zur Ur- und Frühgeschichte in Mecklenburg-Vorpommern 50. Landesamt für Kultur und Denkmalpflege, Schwerin, p XXXGoogle Scholar
  9. Elias RW, Hirao Y, Patterson CC (1981) The circumvention of the natural biopurification of calcium along nutrient pathways by atmospheric inputs of industrial lead. Geochim Cosmochim Acta 46:256I–2580Google Scholar
  10. Faure G, Mensing T (2004) Isotopes: principles and applications. Wiley Science, New YorkGoogle Scholar
  11. Fokkens H, Harding A (2013) The Oxford handbook of the European Bronze Age. Oxford University Press, OxfordCrossRefGoogle Scholar
  12. Frei KM, Frei R (2011) The geographic distribution of strontium isotopes in Danish surface waters—a base for provenance studies in archaeology, hydrology and agriculture. Appl Geochem 26:326–349CrossRefGoogle Scholar
  13. Frei R, Frei KM (2013) The geographic distribution of Sr isotopes from surface waters and soil extracts over the island of Bornholm (Denmark)—a base for provenance studies in archaeology and agriculture. Appl Geochem 38:147–160CrossRefGoogle Scholar
  14. Frei KM, Price TD (2012) Strontium isotopes and human mobility in prehistoric Denmark. J Anthropol Archaeol Sci 4:103–114CrossRefGoogle Scholar
  15. Frotzscher M, Borg G, Pernicka E, Höppner B, Lutz J (2007) Lead isotope and trace element patterns of German and Polish Kupferschiefer—a provenance study of bronze artifacts. In Digging deeper. Irish Association for Economic Geology, Dublin, pp 273–276Google Scholar
  16. Giblin JI, Knudson KJ, Bereczki Z, Pálfi G, Pap I (2013) Strontium isotope analysis and human mobility during the Neolithic and Copper Age: a case study from the Great Hungarian Plain. J Archaeol Sci 40:227–239CrossRefGoogle Scholar
  17. Grupe G, Eickhoff S, Grothe A, Jungklaus B, Lutz A (2012) Missing in action during the Thirty Years’ War: provenance of soldiers from the Wittstock battlefield, October 4, 1636. An investigation of stable strontium and oxygen isotopes. In: Kaiser E, Burger J, Schier W (eds) Population dynamics in prehistory and early history. New approaches by using stable isotopes and genetics. de Gruyter, Berlin, pp 323–336Google Scholar
  18. Gulson BL, Wilson D (1994) History of lead exposure in children revealed from isotopic analyses of teeth. Arch Environ Health 49:279–283CrossRefGoogle Scholar
  19. Gulson BL, Mizon KJ, Korsch MJ, Palmer JM, Donnelly JB (2003) Mobilization of lead from human bone tissue during pregnancy and lactation—a summary of long-term research. Sci Total Environ 303:79–104CrossRefGoogle Scholar
  20. Haack UK, Heinrichs H, Gutsche FH, Plessow K (2003) The isotopic composition of anthropogenic Pb in soil profiles of northern Germany: evidence for pollutant Pb from a continent-wide mixing system. Water Air Soil Pollut 150:113–134CrossRefGoogle Scholar
  21. Harding A (2000) European societies in the Bronze Age. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. Harding A (2013) Velim and violence. Cuadernos de Prehistoria y Arqueología de la Universidad de Granada 23:165–182Google Scholar
  23. Harding A, Sumberov A, Knüsel C, Outram A (eds.), 2007. Velim: violence and death in Bronze Age Bohemia: the results of fieldwork 1992–95, with a consideration of peri-mortem trauma and deposition in the Bronze Age. PragueGoogle Scholar
  24. Heron C, Shoda S, Barcons AB, Czebreszuk J, Eley Y, Gorton M et al (2016) First molecular and isotopic evidence of millet processing in prehistoric pottery vessels. Nat Sci Rep 6:38767. doi: 10.1038/srep38767 CrossRefGoogle Scholar
  25. Hrala J (2000) Metal artefacts and artefacts of other materials. In: Hrala, J Šumberová R, Váwra M (eds.) Velim. A Bronze Age fortified site in Bohemia. Institute of Archaeology, Prague, pp 219–256Google Scholar
  26. Jantzen D, Brinker U, Orschiedt J, Heinemeier J, Piek J, Hauenstein K, Krüger J, Lidke G, Lübke H, Lampe R, Lorenz S, Schult M, Terberger T (2011) A Bronze Age battlefield? Weapons and trauma in the Tollense Valley, north-eastern Germany. Antiquity 85:417–433CrossRefGoogle Scholar
  27. Jantzen D, Lidke G, Brinker U, Dombrowsky A, Dräger J, Krüger J, Lorenz S, Schramm A, Terberger T (2014a) Das bronzezeitliche Fundareal im Tollensetal—Entstehung, Interpretation und Hypothesen. In Tod im TollensetalForschungen zu den Hinterlassenschaften eines bronzezeitlichen Gewaltkonfliktes in Mecklenburg-Vorpommern 1, Jantzen, D., J. Orschiedt, J. Piek, T. Terberger (eds.), pp. 239–252. Beiträge zur Ur- und Frühgeschichte in Mecklenburg-Vorpommern 50. Schwerin: Landesamt für Kultur und DenkmalpflegeGoogle Scholar
  28. Jantzen D, Orschiedt J, Piek J, Terberger T (eds) (2014b) Tod im Tollensetal—Forschungen zu den Hinterlassenschaften eines bronzezeitlichen Gewaltkonfliktes in Mecklenburg-Vorpommern 1. Beiträge zur Ur- und Frühgeschichte in Mecklenburg-Vorpommern 50. Landesamt für Kultur und Denkmalpflege, SchwerinGoogle Scholar
  29. Jantzen D, Lidke G, Dräger J, Krüger J, Rassmann K, Lorenz S, Terberger T (2017) An early Bronze Age causeway in the Tollense Valley, Mecklenburg-Western Pomerania—the starting point of a violent conflict 3300 years ago? Bericht der Römisch-Germanischen KommissionGoogle Scholar
  30. Kamenov GD (2008) High-precision Pb isotopic measurements of teeth and environmental samples from Sofia (Bulgaria): insights for regional lead sources and possible pathways to the human body. Environ Geol 55:669–680CrossRefGoogle Scholar
  31. Kamenov GD, Gulson BL (2014) The Pb isotopic record of historical to modern human lead exposure. Sci Total Environ 490:861–870CrossRefGoogle Scholar
  32. Kellner CM, Schoeninger MJ (2007) A simple carbon isotope model for reconstructing prehistoric human diet. Am J Phys Anthropol 133:1112–1127CrossRefGoogle Scholar
  33. Knipper C (2012) Die Räumliche Organisation der Linearbandkeramischen Rinderhaltung. British Archaeological Reports, OxfordGoogle Scholar
  34. Kristiansen K (1984) Krieger und Häuptlinge in der Bronzezeit Dänemarks. Ein Beitrag zur Geschichte des bronzezeitlichen Schwertes Jahrbuch Römisch Germanisches Zentralmuseum 31:187–208Google Scholar
  35. Kristiansen K (2002) The tale of the sword: swords and sword-fighters in Bronze Age Europe. Oxf J Archaeol 21:319–332CrossRefGoogle Scholar
  36. Kristiansen K, Larsson TB (2005) The rise of Bronze Age society. Cambridge University Press, CambridgeGoogle Scholar
  37. Lidke, G., D. Jantzen, S. Lorenz, T. Terberger (2017) The Bronze Age battlefield in the Tollense Valley, Mecklenburg-Western Pomerania, northeast Germany—conflict scenario research. In Conflict archaeology: materialities of collective violence in late prehistoric and early historic Europe, M. Fernández-Götz and N. Roymans (eds.)Google Scholar
  38. Lorenz S, Schult M, Lampe R, Spangenberg A, Michaelis D, Meyer H, Hensel R, Hartleib J. (2014) Geowissenschaftliche und paläoökologische Ergebnisse zur holozänen Entwicklung des Tollensetals. In Tod im Tollensetal—Forschungen zu den Hinterlassenschaften eines bronzezeitlichen Gewaltkonfliktes in Mecklenburg-Vorpommern 1, D. Jantzen, J. Orschiedt, J. Piek, & T. Terberger (eds.), pp. 37–60. Beiträge zur Ur- und Frühgeschichte in Mecklenburg-Vorpommern 50. Schwerin: Landesamt für Kultur und DenkmalpflegeGoogle Scholar
  39. Maurer A-F, Galer SJG, Knipper C, Beierlein L, Nunn EV, Peters D, Tütken T, Alt KW, Schöne BR (2012) Bioavailable 87Sr/86Sr in different environmental samples—effects of anthropogenic contamination and implications for isoscapes in past migration studies. Sci Total Environ 433:216–229CrossRefGoogle Scholar
  40. Mielke HW, Laidlaw MAS, Gonzales C (2010) Lead (Pb) legacy from vehicle traffic in eight California urbanized areas: continuing influence of lead dust on children’s health. Sci Total Environ 408:3965–3975CrossRefGoogle Scholar
  41. Molloy BPC (2010) Swords and swordsmanship in the Aegean Bronze Age. Am J Archaeol 114:403–428CrossRefGoogle Scholar
  42. Montgomery J, Evans JA, Powlesland D, Roberts CA (2005) Continuity or colonization in Anglo-Saxon England? Isotope evidence for mobility, subsistence practice, and status at West Heslerton. Am J Phys Anthropol 126:123–138CrossRefGoogle Scholar
  43. Montgomery J, Evans JA Chenery SR, Pashley V, Killgrove K (2010) “Gleaming, white and deadly”: using lead to track human exposure and geographic origins in the Roman period in Britain. In Roman diasporas: archaeological approaches to mobility and diversity in the Roman Empire, H. Eckardt (ed.), pp. 199–226. Journal of Roman Archaeology, Supplement 78Google Scholar
  44. Neumann E-R, Wilson M, Heeremans M, Spencer EA, Obst K, Timmerman MJ, Kirstein L (2004) Carboniferous-Permian rifting and magmatism in southern Scandinavia, the North Sea and northern Germany: a review. Geol Soc Lond, Spec Publ 223:11–40CrossRefGoogle Scholar
  45. Oomen AG, Rompelberg CJ, Bruil MA, Dobbe CJ, Pereboom DP, Sips AJ (2002) Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Arch Environ Contam Toxicol 44:281–287CrossRefGoogle Scholar
  46. Peter-Röcher H (2006) Spuren der Gewalt—Identifikation und soziale Relevanz in diachroner Perspektive. In: Piek J, Terberger T (eds) Frühe Spuren der Gewalt—Schädelverletzungen und Wundversorgung an prähistorischen Menschenresten aus interdisziplinärer Sicht. Landesamt für Kultur und Denkmalpflege, Schwerin, pp 163–174Google Scholar
  47. Peter-Röcher H (2007) Gewalt und Krieg im prähistorischen Europa: Beiträge zur Konfliktforschung auf der Grundlage archäologischer, anthropologischer und ethnologischer. Habelt, BonnGoogle Scholar
  48. Price TD (2013) Human mobility at Uppåkra: a preliminary report on isotopic proveniencing. In: Hårdh B, Larsson L (eds) Studies at Uppåkra, an Iron Age city in Scania, Sweden. Institute of Archaeology, Lund, pp 157–169Google Scholar
  49. Price, TD (2014) Isotopic analysis of human tooth enamel from the Tollense Valley, Germany. A preliminary report. In Tod im Tollensetal––Forschungen zu den Hinterlassenschaften eines bronzezeitlichen Gewaltkonfliktes in Mecklenburg-Vorpommern 1. Die Forschungen bis 2011, D. Jantzen, J. Orschiedt, J. Piek and T. Terberger (eds.), pp. 223-232. Beiträge zur Ur-und Frühgeschichte Mecklenburg-Vorpommerns. Schwerin: Landesamt für Kultur und DenkmalpflegeGoogle Scholar
  50. Price TD, Burton JH, Bentley AR (2002) The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry 44:117–135CrossRefGoogle Scholar
  51. Price TD, Knipper C, Grupe G, Smrcka V (2004a) Strontium isotopes and prehistoric human migration: the Bell Beaker period in central Europe. Eur J Archaeol 7:9–40CrossRefGoogle Scholar
  52. Price T, Douglas JW, Knipper C, Burger-Heinrich E, Kurz G, Bentley RA (2004b) Das bandkeramische Gräberfeld vom ‘Viesenhäuser Hof’ bei Stuttgart Mühlhausen: Neue Untersuchungsergebnisse zum Migrationsverhalten im frühen Neolithikum. Funddberichte aus Baden-Württemberg 27:23–58Google Scholar
  53. Price TD, Frei KM, Dobat A, Lynnerup N, Bennike P (2011) Who was in Harold Bluetooth’s army? Strontium isotope investigation of the cemetery at the Viking Age fortress at Trelleborg, Denmark. Antiquity 85:476–489CrossRefGoogle Scholar
  54. Price T, Douglas RF, Bäckström Y, Frei KM, Ingwarsen-Sundstrrom A (2017) Origins of inhabitants from the 16th century Sala (Sweden) silver mine cemetery—a lead isotope perspective. J Archaeol Sci 80:1–13Google Scholar
  55. Scheeres M, Knipper C, Hauschild M, Schönfelder M, Siebel W, Pare C, Alt KW (2014) “Celtic migrations”: fact or fiction? Strontium and oxygen isotope analysis of the Czech cemeteries of Radovesice and Kutná Hora in Bohemia. Am J Phys Anthropol 155:496–512CrossRefGoogle Scholar
  56. Slack MV (1990) Lead in human bones and teeth. In: Priest ND, Van De Vyver FL (eds) Trace metals and fluoride in bones and teeth. CRC, Boston, pp 191–218Google Scholar
  57. Slovak NM, Paytan A (2011) Applications of Sr isotopes in archaeology. Adv Isot Geochem 5:743–768Google Scholar
  58. Smrčka V, Buzek F, Erban V, Berkovec T, Dockalova M, Neumanova K, Fisakova MN (2006) Carbon, nitrogen and strontium isotopes in the set of skeletons from the Neolithic settlement at Vedrovice (Czech Republic). l'Anthropologie 43:315–323Google Scholar
  59. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  60. Stika H-P, Heiss AG (2013) Plant cultivation in the Bronze Age. In: Fokkens H, Harding A (eds) The Oxford handbook of the European Bronze Age. Oxford University Press, Oxford, pp 348–368Google Scholar
  61. Tafuri MA, Craig OE, Canci A (2009) Stable isotope evidence for the consumption of millet and other plants in Bronze Age Italy. Am J Phys Anthropol 139:146–153CrossRefGoogle Scholar
  62. Terberger T, Heinemeier J (2014) Die Ernährungsweise der bronzezeitlichen Menschen aus dem Tollensetal im Spiegel ihrer 13C- und 15N-Isotopie––erste Ergebnisse. In Tod im Tollensetal––Forschungen zu den Hinterlassenschaften eines bronzezeitlichen Gewaltkonfliktes in Mecklenburg-Vorpommern 1. Die Forschungen bis 2011, D. Jantzen, J. Orschiedt, J. Piek and T. Terberger (eds.), pp. 209–214. Beiträge zur Ur-und Frühgeschichte Mecklenburg-Vorpommerns. Schwerin: Landesamt für Kultur und DenkmalpflegeGoogle Scholar
  63. Tütken T, Pfretzschner HU, Vennemann TW, Sun G, Wang YD (2004) Paleobiology and skeletochronology of Jurassic dinosaurs: implications from the histology and oxygen isotope compositions of bones. Palaeogeography, Palaeoclimatology, Palaeoecology 206 (3–4):217–238Google Scholar
  64. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88CrossRefGoogle Scholar
  65. Vorkelius S, Lorenz GD, Rummel S, Quétel CR, Heiss G, Baxter M, Brach-Papa C, Deters-Itzelsberger P, Hoelzl S, Hoogewerff J, Ponzevera E, Van Bocxstaele M, Ueckermann H (2010) Strontium isotopic signatures of natural mineral waters, the reference to a simple geological map and its potential for authentication of food. Food Chem 118:933–940CrossRefGoogle Scholar
  66. Waight TE, Frei R, Storey M (2012) Geochronological constraints on granitic magmatism, deformation, cooling and uplift on Bornholm, Denmark. Bull Geol Soc Den 60:23–46Google Scholar
  67. Wörner G, Zindler A, Staudigel H, Schmincke HU (1986) Sr, Nd, and Pb isotope geochemistry of Tertiary and Quaternary alkaline volcanics from West Germany. Earth Planet Sci Lett 79:107–119CrossRefGoogle Scholar
  68. Zahran S, Laidlaw MA, McElmurry SP, Filippelli GM, Taylor M (2013) Linking source and effect: resuspended soil lead, air lead, and children’s blood levels in Detroit, Michigan. Environ Sci Technol 47:2839–2845CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • T. Douglas Price
    • 1
    Email author
  • Robert Frei
    • 2
  • Ute Brinker
    • 3
  • Gundula Lidke
    • 4
  • Thomas Terberger
    • 4
  • Karin Margarita Frei
    • 5
  • Detlef Jantzen
    • 3
  1. 1.Laboratory for Archaeological ChemistryUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
  3. 3.State Authority for Culture and Preservation of Monuments Mecklenburg-Western Pomerania, State ArchaeologySchwerinGermany
  4. 4.Lower Saxony State Office for Cultural HeritageHannoverGermany
  5. 5.National Museum of DenmarkEnvironmental Archaeology and Materials ScienceKongens LyngbyDenmark

Personalised recommendations