Advertisement

Archaeological and Anthropological Sciences

, Volume 11, Issue 1, pp 51–67 | Cite as

Melting, bathing and melting again. Urban transformation processes of the Roman city of Munigua: the public thermae

  • Mario Gutiérrez-RodríguezEmail author
  • Paul Goldberg
  • Francisco José Martín Peinado
  • Thomas Schattner
  • Wolfram Martini
  • Margarita Orfila
  • Charles Bashore Acero
Original Paper
  • 212 Downloads

Abstract

Although microarchaeological techniques are being increasingly applied to European urban contexts, its integration in classical archaeology projects is far from systematic. In this sense, the archaeological record of Roman cities—because of their vitality, diversity and continuity of occupation—are excellent arenas to develop the direction of these techniques. Here, we show the results of a geoarchaeological study of the chronostratigraphic sequence of the public thermae of the Roman city of Munigua (Sevilla, Spain). Soil micromorphology, along with physico-chemical and geochemical analyses, have revealed dynamics of urban change marked by an initial use of space dedicated to metallurgical production and a later course of urban planning, construction of a thermae complex and the life cycle of this public building. The integrity of the archaeological record has allowed for the use of new descriptive criteria for observing metallurgical by-products of lead and iron melting in thin section and for offering new contextual information about production, technology and site formation processes. X-ray fluorescence (pXRF) enabled the characterization of geochemical anthropogenic inputs related to metallurgical processes. Physico-chemical and chemical analysis have provided significant data about diachronic use of the space that has permitted us to assess abandonment and a later reuse of this public building for metal recycling activities during Late Antiquity. This study reaffirms that the combined use of micromorphology, physico-chemical analyses and geochemistry in Classical Archaeology, are powerful tools in order to decipher urban transformation processes, most of them not visible in the macroscopic record. Understanding the scope of these practises is essential in order to assess the transformation in morphology and topography of urban sites, especially during Late Antiquity.

Keywords

Archaeological soil micromorphology Munigua Public thermae Site formation processes Metallurgical activities Spolia 

Notes

Acknowledgements

Authors wish to acknowledge the financial support provided by institutions involved in this research. “Campus de Excelencia Internacional en Patrimonio” of University of Jaén supported the project “Gea versus Chronos, Geoarchaeological Research in Roman Contexts of Andalusia”, origin of this paper. The Ministry of Education, Culture and Sports provided a Formación del Profesorado Universitario (FPU13/02363) grant to M.G.-R. M.O.P. and M.G.-R. are research members of the PAIDI Research Group HUM 296: Roman and Late Roman Archaeology of Eastern Andalusia. SEM analyses were conducted using equipment provided by the Institute of Archaeology of University College of London. Richard Macphail, Antonio Morgado Juan Aurelio Pérez Macías and Carlos Duarte provided valuable comments on the manuscript.

Supplementary material

12520_2017_527_MOESM1_ESM.docx (26.2 mb)
ESM 1 (DOCX 26834 kb)

References

  1. Atencia Páez R, Serrano Ramos E (1997) El taller antikariense de terra sigillata hispánica. Figlinae Malacit 177–215Google Scholar
  2. Arboledas Martínez L (2010) Minería y metalurgia romana en el sur de la Península Ibérica. Sierra Morena oriental, OxfordGoogle Scholar
  3. Banerjea RY, Bell M, Matthews W, Brown A (2015a) Applications of micromorphology to understanding activity areas and site formation processes in experimental hut floors. Archaeol Anthropol Sci 7:89–112. doi: 10.1007/s12520-013-0160-5 CrossRefGoogle Scholar
  4. Banerjea RY, Fulford M, Bell M et al (2015b) Using experimental archaeology and micromorphology to reconstruct timber-framed buildings from Roman Silchester: a new approach. Antiquity 89:1174–1188. doi: 10.15184/aqy.2015.108 CrossRefGoogle Scholar
  5. Barahona E, Cadahína C, Casado M, Chaves M, Gárate A, Heras L, Lachica M, Lasala M, Llorca R, Montañes L, Pardo MT, Pérez V, Prat L, Romero M, Sánchez B (1984) Determinación de carbonatos totales y caliza activa. Deter- minaciones analíticas en suelos. Normalización de métodos IV. In: Proceedings of the I Congreso Nacional de la Ciencia del Suelo. Madrid, pp 53–69Google Scholar
  6. Ben Abed A, Hanoune R (2010) Des bains à l’huilerie: la fin des thermes du Cratère à Pupput (Tunisie). In: L’Africa romana. Roma, pp 987–994Google Scholar
  7. Bookidis N, Hansen J, Snyder L, Goldberg P (1999) Dining in the sanctuary of Demeter and Kore at Corinth. Hesperia 1–54Google Scholar
  8. Cammas C (1994) Approche micromorphologique de la stratigraphie urbaine à Lattes: premiers résultats. Lattara 7:181–202Google Scholar
  9. Carballas T, Villar MC, Cabaneiro A et al (1997) Effects of fires on soil quality. Biochemical aspects. Forest fire risk and management European Commission, Brussels, pp 249–261Google Scholar
  10. Carey CJ, Wickstead HJ, Juleff G et al (2014) Geochemical survey and metalworking: analysis of chemical residues derived from experimental non-ferrous metallurgical processes in a reconstructed roundhouse. J Archaeol Sci 49:383–397. doi: 10.1016/j.jas.2014.05.017 CrossRefGoogle Scholar
  11. Cook SR, Clarke AS, Fulford MG (2005) Soil geochemistry and detection of early Roman precious metal and copper alloy working at the Roman town of Calleva Atrebatum (Silchester, Hampshire, UK). J Archaeol Sci 32:805–812. doi: 10.1016/j.jas.2005.01.006 CrossRefGoogle Scholar
  12. Cook SR, Banerjea RY, Marshall L-J et al (2010) Concentrations of copper, zinc and lead as indicators of hearth usage at the Roman town of Calleva Atrebatum (Silchester, Hampshire, UK). J Archaeol Sci 37:871–879. doi: 10.1016/j.jas.2009.11.017 CrossRefGoogle Scholar
  13. Courty M-A, Macphail RI, Goldberg P (1989) Soils and micromorphology in archaeology. Cambridge University Press, CambridgeGoogle Scholar
  14. Craddock PT (1995) Early metal mining and production. EdimburghGoogle Scholar
  15. De Laine J, Johnston DE (1999) Roman baths and bathing: proceedings of the first international conference on Roman baths held at bath, England, 30 March-4 April 1992. Journal of Roman archaeology, PortsmouthGoogle Scholar
  16. Domergue C (2000) En busca del plomo de las minas romanas del distrito de Linares-La Carolina. In: Rábano I (ed) Patrimonio Geológico y Minero en el marco del Desarrollo Sostenible. Instituto Geológico y Minero de España, pp 61–67Google Scholar
  17. Domergue C (1990) Les mines de la peninsule iberique dans l’antiquité romaine. RomeGoogle Scholar
  18. Domergue C, Le Roux P (1972) Rapport entre la zone minière de la Sierra Morena et la plaine agricole en Guadalquivir à l’époque romaine. Notes et hypothèse. Mélanges de la Casa de Velázquez 8:614–622Google Scholar
  19. Duval N (1971) Église et temple en Afrique du Nord. Note sur les installations chrétiennes dans les temples a cour à propos de l’église dite de servus a Sbeitla Bull Archéologique CTHS fasc 7:265–296Google Scholar
  20. Fagan GG (2002) Bathing in public in the Roman world. University of Michigan PressGoogle Scholar
  21. Fernández Ochoa C, García-Entero V (2000) II Coloquio internacional de arqueologia en Gijón Termas romanas en el occidente del imperio: Gijón 1999. VTP editorial; Ayuntamiento de GijónGoogle Scholar
  22. Fernández Ochoa C, Morillo Cerdán A, Zarzalejos Prieto M (2000) Grandes conjuntos termales públicos en Hispania. In: Fernández Ochoa C, García Entero V (eds) II Coloquio Internacional de Arqueología en Gijón. Termas romanas en el occidente del Imperio. VPT, Gijón, pp 59–72Google Scholar
  23. Figueroa-Cisterna J, Bagur-Gonzalez MG, Morales-Ruano S, Carrillo-Rosua J, Martin-Peinado F (2011) The use of a combined portable x ray fluorescence and multivariate statistical methods to assess a validated macroscopic rock samples classification in an ore exploration survey. Talanta 85:2307–2315CrossRefGoogle Scholar
  24. Friesem D, Boaretto E, Eliyahu-Behar A, Shahack-Gros R (2011) Degradation of mud brick houses in an arid environment: a geoarchaeological model. J Archaeol Sci 38:1135–1147. doi: 10.1016/j.jas.2010.12.011 CrossRefGoogle Scholar
  25. Fuentes Domínguez A (2000) Las termas en la Antigüedad Tardía: reconversión, amortización, desaparición. El caso hispano. In: Fernández Ochoa C, García Entero V (eds) II Coloquio Internacional de Arqueología en Gijón. Termas romanas en el occidente del Imperio. VPT, Gijón, pp 135–146Google Scholar
  26. Goldberg P, Berna F (2010) Micromorphology and context. Geoarchaeol Taphon 214:56–62. doi: 10.1016/j.quaint.2009.10.023 CrossRefGoogle Scholar
  27. Goldberg P, Macphail RI (2006) Practical and theoretical Geoarchaeology. Blackwell Publishing LtdGoogle Scholar
  28. Grünhagen W (1977) Die Statue einer Nymphe aus Munigua. Madr Mitteilungen 18:272–284Google Scholar
  29. Grünhagen W, Hauschild T (1977) Suscinto informe sobre las excavaciones arqueológicas en 1974, 75, y 76. Not Arqueol Hispánico XVII:319–410Google Scholar
  30. Gurt Esparraguera JM, Sánchez Ramos I (2008) Las ciudades hispanas durante la Antigüedad tardía : una lectura arqueológica. In: Abad Casal L, Olmo L (eds) Recópolis y la ciudad en la época visigoda. Museo Arqueológico Regional, Alcalá de Henares, pp 183–202Google Scholar
  31. Hauschild T (1962) Munigua. Suscinto informe sobre la excavación de 1962. Not Arqueol Hispánico VI:189–192Google Scholar
  32. Hauschild T (1969) Munigua. Exploraciones en el área de la ciudad al este del foro Not Arqueol Hispánico XIII-XIV:61–62Google Scholar
  33. ITGE (1991) Mapa geológico de España Escala 1:50.000. Primera edición. Hoja 963 Lora del Río. Instituto Tecnológico Geominero de España MadridGoogle Scholar
  34. Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140(2–3):227–238Google Scholar
  35. Jones R, Challands A, French C et al (2010) Exploring the location and function of a late Neolithic house at Crossiecrown, Orkney by geophysical, geochemical and soil micromorphological methods. Archaeol Prospect 17:29–47. doi: 10.1002/arp.370 CrossRefGoogle Scholar
  36. Karkanas P, Efstratiou N (2009) Floor sequences in Neolithic Makri, Greece: micromorphology reveals cycles of renovation. Antiquity 83:955–967. doi: 10.1017/S0003598X00099270 CrossRefGoogle Scholar
  37. Karkanas P, Goldberg P (2008) Micromorphology of sediments: deciphering archaeological context. Isr J Earth Sci 56:63–71CrossRefGoogle Scholar
  38. Lemonnier P (1983) Elements for an anthropology of technology. University of Michigan, Museum of Anthropology, MichiganGoogle Scholar
  39. Lepelley C (1994) Le musée des statues divines. La volonté de sauvegarder le patrimoi- ne artistique païen à l’époque théodosienne. Cah Archeol 42:5–15Google Scholar
  40. Levi G (1993) Sobre microhistoria. In: Burke P (ed) Formas de hacer la Hisotia. Alianza, MadridGoogle Scholar
  41. Lindbo DL, Stolt MH, Vepraskas MJ (2010) 8- Redoximorphic features. In: Stoops G, Marcelino V, Mees F (eds) Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam, pp 129–147CrossRefGoogle Scholar
  42. Macphail RI (1994) The reworking of urban stratigraphy by human and natural processes. In: Hall AR, Kenward HK (eds) Urban-rural connexions: perspectives from environmental archaeology. Oxbow, Oxford, pp 13–43Google Scholar
  43. Macphail RI (2002) Pevensey castle: soil micromorphology and chemistry of the Roman deposits and “dark earth”. University of Reading, ReadingGoogle Scholar
  44. Macphail RI, Courty, M-A (1985) Interpretation and significance of urban deposits. In: Edgren T, Jugner H (eds) Proceedings of the Third Nordic conference on the Application of Scientific Methods in Archaeology. Helsinki, pp 71–84Google Scholar
  45. Macphail RI, Crowther J (n.d.) House of Amarantus (I, 9, 11–12). Pompei. Soil Micromorphology. Reading University ReportGoogle Scholar
  46. Macphail RI, Cruise G (2000) Rescuing our urban archaeological soil heritage: a multidisciplinary microstratigraphical approach. In: Burghardt W, Dornauf C (eds) Proceedings of the first international conference on soils of urban, industrial, Traffic and Mining Areas. IUSS/IBU, Essen, pp 9–14Google Scholar
  47. Macphail RI, Goldberg P (2010) 26- archaeological materials. In: Stoops G, Marcelino V, Mees F (eds) Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam, pp 589–622CrossRefGoogle Scholar
  48. Macphail RI, Crowther J, Cruise G (2011) Section 17. Soil Micromorphology, chemistry and magnetic susceptibility. In: Ford Teague S, Biddulph E, Hardy A, Brown L (eds) Winchester, a city in the making. Archaeological excavations between 2002–2007 on the sites of Northgate House, Staple Gardens and the former Winchester Library, Jewry St. Oxford, pp 1–55Google Scholar
  49. Manderscheid H (2004) Ancient bath and bathing: a bibliography for the years 1988–2001. Portsmouth, Rhode IslandGoogle Scholar
  50. Mannoni T, Giannichedda E (2003) Archeologia della produzione. EinaudiGoogle Scholar
  51. Martín-Peinado FJ, Rodríguez-Tovar FJ (2016) Researching protected geosites: in situ and non-destructive analysis of mass-extinction bioevents. Geoheritage 8(4):351–357Google Scholar
  52. Martín Peinado F, Morales Ruano S, Bagur González MG, Estepa Molina C (2010) A rapid field procedure for screening trace elements in polluted soil using portable X-ray fluorescence (PXRF). Geoderma 159(1–2):76–82Google Scholar
  53. MAPA (1994) Métodos Oficiales de Análisis. Tomo III Secretaría General Técnica del Ministerio de Agricultura, Pesca y Alimentación (MAPA), MadridGoogle Scholar
  54. Mathieu C, Stoops G (1972) Observations petrographiques sur la paroi d’un four a chaux carolingien creuse en sol limoneux. Archeol Mediev 2:347–354Google Scholar
  55. Matthews W (1995) Micromorphological characteristics of occupation deposits and microstratigraphic sequences at Abu Salabikh, southern Iraq. In: Barnham AJ, Macphail RI (eds) Archaeological sediments and soils: analysis, interpretation and management. Institute of Archaeology, University College of London, London, pp 41–76Google Scholar
  56. Matthews W, French CAI, Lawrence T et al (1997) Microstratigraphic traces of site formation processes and human activities. World Archaeol 29:281–308. doi: 10.1080/00438243.1997.9980378 CrossRefGoogle Scholar
  57. Mentzer SM (2014) Microarchaeological approaches to the identification and interpretation of combustion features in prehistoric archaeological sites. J Archaeol Method Theory 21:616–668. doi: 10.1007/s10816-012-9163-2 CrossRefGoogle Scholar
  58. Mentzer S, Romano D, Voyatzis M (2015) Micromorphological contributions to the study of ritual behavior at the ash altar to Zeus on Mt. Lykaion, Greece. Archaeol Anthropol Sci 1–27. doi: 10.1007/s12520-014-0219-y
  59. Milek KB, French C, Skre D (2007) Soils and sediments in the settlement and harbour at Kaupang. In: Kaupang in Skiringssal. Aarhus University Press, Aarhus, pp 321–361Google Scholar
  60. Nicosia C, Langohr R, Carmona González P et al (2013) Land use history and site formation processes at the Punic site of Pauli Stincus in west Central Sardinia. Geoarchaeology 28:373–393. doi: 10.1002/gea.21443 CrossRefGoogle Scholar
  61. Nielsen I (1990) Thermae et Balnea: the architecture and culture history of roman public baths. Aarhus University PressGoogle Scholar
  62. Nocete F, Sáez R, Bayona M et al (2011) Direct chronometry (14 C AMS) of the earliest copper metallurgy in the Guadalquivir Basin (Spain) during the third millennium BC: first regional database. J Archaeol Sci 38:3278–3295CrossRefGoogle Scholar
  63. Olsen SR, Cole CV, Watanabe FS and Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate U S Department of Agriculture Circular No 939Google Scholar
  64. Orton C, Hughes M (2013) Pottery in Archaeology. Cambridge University PressGoogle Scholar
  65. Pagliai M, Stoops G (2010) 19- Physical and biological surface crusts and seals. In: Stoops G, Marcelino V, Mees F (eds) Interpretation of micromorphological features of soils and Regoliths. Elsevier, Amsterdam, pp 419–440CrossRefGoogle Scholar
  66. Pearson C, Matthews W (2011) Preliminary soil micromorphological analysis of samples from Sidon, Lebanon. Archaeol Hist Leban 34-35:192–212Google Scholar
  67. Pérez Macías JA, Schattner T (2013) Retaining and renewing. The Roman Municipium Munigua in the light of technical developments in mining in the Hispanic Southwest. In: Burmeister S, Hansen S, Kunst M, Müller-Scheeßel N (eds) metal matters. Innovative technologies and social change in prehistory and antiquity. pp 241–260Google Scholar
  68. Rentzel P (2004) Geoarchäologische Untersuchungen zur Holzbauperiode. Forschungen Augst Band 21:137–148Google Scholar
  69. Rentzel P (2009) Der Arenaboden des Amphitheaters von Augst-Neun Türme. Geoarchäologische Untersuchungen. In: Amphitheatrum in Provincia et Italia. Architektur und Nutzung römischer Amphitheater von Augusta Raurica bis Puteoli. Römermuseum Augst, pp 569–578Google Scholar
  70. Rosen AM (1986) Cities of clay: the geoarcheology of tells. University of Chicago PressGoogle Scholar
  71. Sánchez JAJ, Carbonell JS (2004) Termas e iglesias durante la Antigüedad Tardía:¿ reutilización arquitectónica o conflicto religioso? Algunos ejemplos hispanos Antigüedad Crist Monogr Históricas Sobre Antigüedad Tardía 185–202Google Scholar
  72. Schattner T (2003) Munigua: Cuarenta años de investigaciones. Junta de Andalucía, Instituto Arqueológico Alemán, SevillaGoogle Scholar
  73. Schattner T, Ovejero Zappino G, Pérez Macías JA (2005) Avances sobre la producción metalúrgica en Munigua. Habis 36:253–276Google Scholar
  74. Schrettle B (2010) Balneum, horreum, granarium - Zur interpretation eines gebäudes in Rannersdorf (Steiermark). Archäol Korresp Urgesch Römererzeit Frühmittelalter 40:227–241Google Scholar
  75. Shahack-Gros R, Albert R-M, Gilboa A et al (2005) Geoarchaeology in an urban context: the uses of space in a Phoenician monumental building at Tel dor (Israel). J Archaeol Sci 32:1417–1431. doi: 10.1016/j.jas.2005.04.001 CrossRefGoogle Scholar
  76. Stoops G (2003) Guidelines for analysis and description of soil and regolith thin sections. Soil science Society of America Inc, MadisonGoogle Scholar
  77. Stoops G (2014) The “Fabric” of soil micromorphological research in the 20th century—A bibliometric analysis. Geoderma 213:193–202. doi: 10.1016/j.geoderma.2013.08.017 CrossRefGoogle Scholar
  78. U.S. EPA (1998) Field portable x-ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment. Method 6200Google Scholar
  79. U.S. EPA (2006) XRF technologies for measuring trace elements in soil and sediment. Niton XLt 700 series XRF analyzer. Innovative technology verification report EPA/540/R-06/004Google Scholar
  80. Wieder M, Yaalon DH (1982) Effect of matrix composition of carbonate nodule crystallisation. Geoderma 11:95–121Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Mario Gutiérrez-Rodríguez
    • 1
    Email author
  • Paul Goldberg
    • 2
    • 3
    • 4
  • Francisco José Martín Peinado
    • 5
  • Thomas Schattner
    • 6
  • Wolfram Martini
    • 7
  • Margarita Orfila
    • 1
  • Charles Bashore Acero
    • 1
  1. 1.Prehistory and Archaeology DepartmentUniversity of GranadaGranadaSpain
  2. 2.Department of ArchaeologyBoston UniversityBostonUSA
  3. 3.School of Earth and Environmental SciencesUniversity of WollongongWollongongAustralia
  4. 4.Institute for Archaeological SciencesEberhard Karls Universität TübingenTübingenGermany
  5. 5.Soil Science DepartmentUniversity of GranadaGranadaSpain
  6. 6.German Archaeological Institute, Abteilung MadridMadridSpain
  7. 7.Institut für Altertumswissenschaften der Justus-Liebig-Universität, Klassische ArchäologieGiessenGermany

Personalised recommendations