Archaeological and Anthropological Sciences

, Volume 10, Issue 8, pp 2137–2157 | Cite as

The ties that bind: archaeometallurgical typology of architectural crampons as a method for reconstructing the iron economy of Angkor, Cambodia (tenth to thirteenth c.)

  • S. LeroyEmail author
  • M. Hendrickson
  • S. Bauvais
  • E. Vega
  • T. Blanchet
  • A. Disser
  • E. Delque-Kolic
Original Paper


The dynamic technological characteristics and diverse cultural potential of iron make it one of the most influential materials for facilitating cultural transformation. Reconstructing how iron was managed is an important way to understand political and socioeconomic issues in pre-modern state-level societies. In contrast to studies of smelting sites, the study of iron objects allows us to evaluate trends of production in relation to practice of consumption. By investigating a given class of iron objects, it is possible to document shifts in technical processes, cultural choices, and social organisation that are representative of a state or polities broader iron economy. This study outlines the use of comprehensive archaeometallurgical typology, a new approach combining technological, chronological, and “sourcing” analyses of iron architectural crampons from the Khmer capital of Angkor (ninth to fifteenth c. CE) in Cambodia. Our methodology was implemented on 69 iron crampons from three masonry complexes (the Royal Palace, Baphuon, and Preah Khan) spanning the tenth to thirteenth centuries. Compiling a vast and statistically significant data set enables us to identify diachronic changes of production and manufacturing patterns that seem to be linked to key periods of expansion of the Khmer Empire. These patterns represent the first phase in reconstructing the iron economy of the most influential polities in mainland Southeast Asia.


Iron economy Bloomery Objects Integrated archaeometallurgical typology Southeast Asia Angkor 



Funding for this project was provided by the French National Research Agency (IRANGKOR project, ANR-14-CE31-0007) and the Australian Research Council Discovery Project Grant (DP0987878). This project is indebted to several institutions including the Ministry of Culture and Fine Arts (Royal Palace), the Authority for the Protection and Safeguarding of Angkor Region Authority (APSARA), the World Monuments Fund (Preah Khan), and the École Française d’Extrême-Orient (Baphuon). We acknowledge the LMC14 team for the radiocarbon measurements. Thanks to Philippe Dillmann (LAPA-IRAMAT/NIMBE, CEA/CNRS, Saclay) and reviewers for the stimulating exchanges and remarks.

Supplementary material

12520_2017_524_MOESM1_ESM.docx (659 kb)
ESM 1 (DOCX 658 kb)
12520_2017_524_MOESM2_ESM.docx (16 kb)
ESM 2 (DOCX 16 kb)
12520_2017_524_MOESM3_ESM.docx (244 kb)
ESM 3 (DOCX 244 kb)
12520_2017_524_MOESM4_ESM.pdf (672 kb)
ESM 4 (PDF 671 kb)
12520_2017_524_MOESM5_ESM.docx (650 kb)
ESM 5 (DOCX 649 kb)


  1. Bauvais S, Schwab R, Brauns M, Dillmann P (2011) Circulation of iron products in the Iron Age of Eastern France and Southern Germany: multidisciplinary and methodological approaches towards the provenance of ancient iron. Metalla Sonderheft 4:95–96Google Scholar
  2. Baxter MJ (2006) A review of supervised and unsupervised pattern recognition in archaeometry. Archaeometry 48:671–694CrossRefGoogle Scholar
  3. Berranger M, Fluzin P (2012) From raw iron to semi-product: quality and circulation of materials during the Iron Age in France. Archaeometry 54:664–684. doi: 10.1111/j.1475-4754.2011.00641.x CrossRefGoogle Scholar
  4. Blakelock E, Martino-Torres M, Veldhuijzen H, Young T (2009) Slag inclusions in iron objects and the quest for provenance: an experiment and a case study. J Archaeol Sci 36:1745–1757CrossRefGoogle Scholar
  5. Bruguier B (1991) Sur quelques procédés de liaison utilisés dans l'architecture cambodgienne ancienne. Bulletin de l'Ecole française d'Extrème-Orient 78:179–202CrossRefGoogle Scholar
  6. Buchwald VF, Wivel H (1998) Slag analysis as a method for the characterization and provenancing of ancient iron objects. Mater Charact 40:73–96CrossRefGoogle Scholar
  7. Charlton M, Blakelock E, Martinón-Torres M, Young T (2012) Investigating the production provenance of iron artifacts with multivariate methods. J Archaeol Sci 39:2280–2293CrossRefGoogle Scholar
  8. Charlton MF (2015) The last frontier in ‘sourcing’: the hopes, constraints and future for iron provenance research. J Archaeol Sci 56:210–220. doi: 10.1016/j.jas.2015.02.017 CrossRefGoogle Scholar
  9. Charlton MF, Crew P, Rehren T, Shennan SJ (2010) Explaining the evolution of ironmaking recipes—an example from northwest Wales. J Anthropol Archaeol 29:352–367CrossRefGoogle Scholar
  10. Childe VG (1950) The urban revolution. Town Plan Rev 21:3–17CrossRefGoogle Scholar
  11. Coedès G (1954) Inscriptions du Cambodge vol VI. Textes et documents sur l'Indochine. E. de Boccard, ParisGoogle Scholar
  12. Collis J (1984) Oppida: earliest towns north of the Alps. Dept. of Prehistory and Archaeology, University of Sheffield, SheffieldGoogle Scholar
  13. Collis J (2010) Why do we still dig iron age ramparts? In: Fichtl S (ed) Murus Celticus. Architecture et fonction des ramparts de l'âge du Fer. Actes du colloque de Bibracte, à Glux-sur-Glenne les 11 et 12 octobre 2006. Bibracte, vol 19. Bibracte, Centre Archéologique Européen, Glux-sur-Glenne, pp 27–35Google Scholar
  14. Costin CL (1991) Craft specialization: issues in defining, documenting, and explaining the organisation of production. Archaeol Method Theory 3:1–56Google Scholar
  15. Costin CL (2005) The study of craft production. In: Maschner HDG, Chippindale C (eds) Handbook of methods in archaeology, vol 1. AltaMira Press, Lanham, pp 1032–1105Google Scholar
  16. Cunin O (2004) De Ta Prohm au Bayon, Analyse comparative de l'histoire architecturale des principaux monuments du style du Bayon. Institut National Polytechnique de LorraineGoogle Scholar
  17. Dillmann P, L'Héritier M (2007) Slag inclusion analyses for studying ferrous alloys employed in French medieval buildings: supply of materials and diffusion of smelting processes. J Archaeol Sci 34:1810–1823CrossRefGoogle Scholar
  18. Dinsmoor WB (1922) Structural iron in Greek architecture. Archaeol Inst Am 26:148–158CrossRefGoogle Scholar
  19. Disser A, Dillmann P, Bourgain C, L'Héritier M, Vega E, Bauvais S, Leroy M (2014) Iron reinforcements in Beauvais and Metz Cathedrals: from bloomery or finery? The use of logistic regression for differentiating smelting processes. J Archaeol Sci 42:315–333CrossRefGoogle Scholar
  20. Disser A, Dillmann P, Leroy M, L'Héritier M, Bauvais S, Fluzin P (2016) Iron supply for the building of Metz cathedral: new methodological development for provenance studies and historical considerations. Archaeometry 59:493–510. doi: 10.1111/arcm.12265 CrossRefGoogle Scholar
  21. Dumarçay J, Royère P (2001) Cambodian architecture eighth to thirteenth centuries. M. Smithies, BostonGoogle Scholar
  22. Evans D (2007) Putting Angkor on the map: a new survey of a Khmer ‘Hydraulic City’ in historical and theoretical context University of SydneyGoogle Scholar
  23. Evans D, Pottier C, Fletcher R, Hensley S, Tapley I, Milne A, Barbetti M (2007) A comprehensive archaeological map of the world’s largest preindustrial settlement complex at Angkor, Cambodia. Proc Natl Acad Sci 104:14277–14282. doi: 10.1073/pnas.0702525104 CrossRefGoogle Scholar
  24. Fluzin P, Berranger M, Bauvais S, Pagès G, Dillmann P (2012) An archaeological and archaeometrical approach of ferrous semi-product: typology, quality and circulation. In: Constanza C (ed) Acta Mineraria et Metallurgia, Studi in onore di Marco Tizzoni, vol 20. Notizie Archeologiche Bergomensi, Bergame, pp 195–204Google Scholar
  25. Galili E, Bauvais S, Rosen B, Dillmann P (2015) Cargoes of iron semi-products recovered from shipwrecks off the Carmel coast, Israel. Archaeometry 57:505–535CrossRefGoogle Scholar
  26. Groslier BP (2014) Fouilles du palais royal d'Angkor Thom. Campagne 1958. Rapport préliminaire vol 33Google Scholar
  27. Groslier G (ed) (1921) Recherches sur les Cambodgiens d'après les textes et les monuments depuis les premiers siècles de notre ère. Augustin Challamel, ParisGoogle Scholar
  28. Hedges REM, Salter C (1979) Source determination of iron currency bars through the analysis of slag inclusions. Archaeometry 21:161–175CrossRefGoogle Scholar
  29. Hendrickson M, Leroy S, Hua Q, Phon K, Voeun V (2017a) Smelting in the shadow of the Iron Mountain: preliminary field investigation of the industrial landscape around Phnom Dek, Cambodia (9th to 20th centuries CE). Asian PerspectivesGoogle Scholar
  30. Hendrickson M, Pryce TO, Sonnemann T, Phon K, Hua Q (2017b) Industries of Angkor Project: preliminary investigation of iron production at Boeng Kroam, Preah Khan of Kompong Svay Siksacakr: Journal of Cambodia ResearchGoogle Scholar
  31. Hørst-Madsen L, Buchwald VF (1999) The characterisation and provenancing of ore, slag and iron from the Iron Age settlement in Snorup. J Hist Metall Soc 33:57–67CrossRefGoogle Scholar
  32. Hruby ZX, Flad RK (2007) Rethinking craft specialization in complex societies: archaeological analyses of the social meaning of production. Archaeological papers of the American Anthropological Association, vol 17. University of California Press, American Anthropological Association, BerkeleyGoogle Scholar
  33. Im S (2011) Ancient iron industry project at Khvao: the Excavation Campaign 2010 and Preliminary Report. Paper presented at the 20th ICC Technical Meeting, Siem Reap, Cambodia. June 8-9Google Scholar
  34. Jacques C, Freeman M (1999) Ancient Angkor. Riverbooks guidesGoogle Scholar
  35. Keller CM, Keller JD (1996) Cognition and tool use. The blacksmith at work. Cambridge University Press, CambridgeGoogle Scholar
  36. Kyritsis-Spinoulas M, Vangelatos, Z., Vassilou, P., Manolakos, D., Delagrammatikas, M., Papadopoulou, O. (2016) Steel clamps form the Acropolis: some old, some new and some digital. Paper presented at the 5th International Conference on Corrosion Mitigation and Surface Protection Technologies Steigenberger hotel - Luxor, Egypt, 11-18 DecemberGoogle Scholar
  37. L'Heritier M, Dillmann P, Aumard S, Fluzin P (2013) Iron? Which iron? Methodologies for metallographic and slag inclusion studies applied to ferrous reinforcements from Auxerre Cathedral. In: Humphris J, Rehren T (eds) The world of iron. Archetype Publications, London, pp 409–420Google Scholar
  38. L'Héritier M, Dillmann P, Benoit P (2010) Iron in the building of gothic churches: its role, origins and production using evidence from Rouen and Troyes. Hist Metall 44:21–35Google Scholar
  39. Lemmonier P (2010) L'Etude des systèmes techniques. Tech Cult 54-55:46–67CrossRefGoogle Scholar
  40. Lemonnier P (1986) The study of material culture today: toward an anthropology of technical systems. J Anthropol Archaeol 5:147–186CrossRefGoogle Scholar
  41. Leroi-Gourhan A (1943) Evolution et techniques. L’homme et la matière. Sciences d’aujourd’hui. Albin Michel, ParisGoogle Scholar
  42. Leroy S et al (2012) The medieval iron market in Ariège (France). Multidisciplinary analytical approach and multivariate analyses. J Archaeol Sci 39:1080–1093. doi: 10.1016/j.jas.2011.11.025 CrossRefGoogle Scholar
  43. Leroy S, Hendrickson M, Delqué-Kolic E, Vega E, Dillmann P (2015a) First direct dating for the construction and modification of the Baphuon Temple Mountain in Angkor, Cambodia. PLoS One 10:e0141052. doi: 10.1371/journal.pone.0141052 CrossRefGoogle Scholar
  44. Leroy S, L'Héritier M, Delqué-Kolic E, Dumoulin J-P, Moreau C, Dillmann P (2015b) Consolidation or initial design? Radiocarbon dating of ancient iron alloys sheds light on the reinforcements of French Gothic Cathedrals. J Archaeol Sci 53:190–201. doi: 10.1016/j.Jas.2014.10.016 CrossRefGoogle Scholar
  45. Living Angkor Road Project (2008) Living Angkor Road Project Phase II Progressive Report, October 2007–March 2008. Chulachomklao Royal Military Academy, Nakon NayokGoogle Scholar
  46. Nafilyan G (1969) Angkor Vat, description graphique du temple. Publications de l'Ecole française d'Extrême-Orient. Mémoire archéologique; 4. Ècole française d'Extrême-Orient A. Maisonneuve, ParisGoogle Scholar
  47. Pagès G (2008) La métallurgie du fer en France méditerranéenne de l’Antiquité au début du Moyen Âge: jalons d’une approche interdisciplinaire. Thèse de doctorat, Université Montpellier III – Paul-ValéryGoogle Scholar
  48. Pagès G, Dillmann P, Fluzin P, Long L (2011) A study of the roman iron bars of Saintes-Maries-de-la-Mer (Bouches-du-Rhône, France). A proposal for a comprehensive metallographic approach. J Archaeol Sci 38:1234–1252CrossRefGoogle Scholar
  49. Paynter S (2006) Regional variations in bloomery smelting slag of the Iron Age and Romano-British periods. Archaeometry 48:271–292CrossRefGoogle Scholar
  50. Pottier C (1999) Carte Archéologique de la Région d'Angkor. Zone SudGoogle Scholar
  51. Pryce TO et al (2014) The Iron Kuay of Cambodia: tracing the role of peripheral populations in Angkorian to colonial Cambodia via a 1200-year old industrial landscape. J Archaeol Sci 47:142–163CrossRefGoogle Scholar
  52. Ramsey CB, Lee S (2013) Recent and planned developments of the program OxCal. Radiocarbon 55:3–4CrossRefGoogle Scholar
  53. Royère P (1999) Programme de restauration du Bapùon. A propos d'une occupation tardive du monument. Arts Asiatiques 54:153–158CrossRefGoogle Scholar
  54. Royère P (2006) Notes architecturales relatives à la construction du Baphuon à Angkor. Les Indes Savantes:245–273Google Scholar
  55. Shortman EM, Urban PA (2004) Modelling the roles of craft production in ancient political economies. J Archaeol Res 12:185–226CrossRefGoogle Scholar
  56. Thuy C (2014) Iron and stone. Ancient Khmer. Royal Academy of Cambodia, Phnom PenhGoogle Scholar
  57. Tosi M (1984) The notion of craft specialization and its representation in the archaeological record of early states in the Turanian basin. In: Spriggs M (ed) Marxist approaches in archaeology. Cambridge university press, Cambridge, pp 22–52Google Scholar
  58. Varoufakis GJ (2012) The rapid development of technology in making iron clamps of three ancient temples in the Archaic and Classical Period. J Chem Chem Eng 6:1136–1141Google Scholar
  59. Verna C (2001) Le temps des Moulines. Fer, technique et société dans les Pyrénées centrales (XIIIe–XVIe siècles). Publications de la Sorbonne, ParisGoogle Scholar
  60. Wagner DB (2001) The administration of the iron industry in eleventh-century China. J Econ Soc Hist Orient 44:175–197CrossRefGoogle Scholar
  61. Wagner DB (2008) Science and civilization in China. Volume 5. Chemistry and chemical technology. Part II: ferrous metallurgy. Vol 5. Science and civilization in China. Cambridge University Press, CambridgeGoogle Scholar
  62. Wailes B (1996) V. Gordon Childe and the relations of production. In: Wailes B (ed) Craft specialization and social evolution: in memory of V. Gordon Childe. University museum monograph, vol 93. The University Museum of Archaeology and Anthropology University of Pennsylvania, Philadelphia, pp 3–14Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • S. Leroy
    • 1
    Email author
  • M. Hendrickson
    • 2
  • S. Bauvais
    • 1
  • E. Vega
    • 1
  • T. Blanchet
    • 1
  • A. Disser
    • 1
  • E. Delque-Kolic
    • 3
  1. 1.LAPA-IRAMAT, NIMBE, CEA, CNRS, CEA SaclayUniversité Paris-SaclayGif-sur-YvetteFrance
  2. 2.University of IllinoisChicagoUSA
  3. 3.LSCE-LMC14, CEA SaclayGif-sur-YvetteFrance

Personalised recommendations