Archaeological and Anthropological Sciences

, Volume 10, Issue 8, pp 1903–1912 | Cite as

Non-destructive characterization of archeological Cu-based artifacts from the early metallurgy of southern Portugal

  • Carlo Bottaini
  • Antonio Brunetti
  • Rui Bordalo
  • António Valera
  • Nick SchiavonEmail author
Original Paper


In this study, Monte Carlo (MC) simulations combined with energy dispersive X-ray fluorescence (EDXRF) spectroscopy have been used to characterize non-destructively a collection of Cu-based artifacts recovered from two archeological sites in southern Portugal: (a) the Chalcolithic E.T.A.R. site of Vila Nova de Mil Fontes and (b) the Middle Bronze Age site of Quinta do Estácio 6. The metal artifacts show a multilayered structure made up of three distinct layers: (a) brownish carbonate soil-derived crust, (b) green oxidized corrosion patina, and (c) bulk metal. In order to assess the reliability of the EDXRF-based Monte Carlo simulations to reproduce the composition of the alloy substrate in archeological bronze artifacts without the need to previously remove the superficial corrosion and soil derived patinas, EDXRF analysis together with scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) was also performed on cleaned and patina-/crust-coated areas of the artifacts. Characterization of the mineralogical composition of the corrosion products in the surface patinas was further determined by means of X-ray diffraction (XRD). Results suggest that the adopted EDXRF/Monte Carlo protocol may represent a safe and fast analytical approach in the quantitative characterization of the bulk chemical composition of Cu-based metal artifacts even in the presence of fairly thick corrosion patinas and/or soil-derived encrustations at the surface of the archeological objects.


Monte Carlo simulation EDXRF Early metallurgy Cu-based artifacts Southern Portugal 



This work has been financed by national funds by FCT–Foundation for Science and Technology under the UID project UID/HIS/00057/2013 (POCI-01-0145-FEDER-007702) and UID/Multi/04449/2013 (POCI-01-0145-FEDER-007649), COMPETE, FEDER, Portugal2020. The first author also thanks the FCT for the SFRH/BPD/111039/2015 grant and Robert Allen Zimmerman for support in writing the paper.


  1. Bayona MR (2008) La Investigación de la Actividad Metalúrgica Durante el III Milenio A.N.E. en el Suroeste de la Península Ibérica, Archaeopress, OxfordGoogle Scholar
  2. Benzaazoua M, Marion P, Pinto A, Migeon H, Wagner FE (2003) Tin and indium mineralogy within selected samples from the Neves Corvo ore deposit (Portugal): a multidisciplinary study. Miner Eng 16(11):1291–1302. doi: 10.1016/j.mineng.2003.07.008 CrossRefGoogle Scholar
  3. Bottaini C, Mirão J, Figuereido M, Candeias A, Brunetti A, Schiavon N (2015) Energy dispersive X-ray fluorescence spectroscopy/Monte Carlo simulation approach for the non-destructive analysis of corrosion patina-bearing alloys in archaeological bronzes: the case of the bowl from the Fareleira 3 site (Vidigueira, South Portugal). Spectrochim Acta, Part B 103-104:9–13. doi: 10.1016/j.sab.2014.10.015 CrossRefGoogle Scholar
  4. Bottaini C, Vilaça R, Schiavon N, Mirão J, Bordalo R, Paternoster G, Montero-Ruiz I (2016) New insights on Late Bronze Age Cu-metallurgy from Coles de Samuel hoard (Central Portugal): a combined multi-analytical approach. J Archaeol Sci Report 7:344–357. doi: 10.1016/j.jasrep.2016.05.009 CrossRefGoogle Scholar
  5. Bottaini C, Silva ALM, Covita DS, Moutinho LM, Veloso JFCA (2012) Energy dispersive X-ray fluorescence analysis of archeological metal artifacts from the final Bronze Age. X-Ray Spectrom 41(3):144–149. doi: 10.1002/xrs.2368 CrossRefGoogle Scholar
  6. Bray PJ, Pollard AM (2015) Form and flow: the ‘karmic cycle’ of copper. J Archaeol Sci 56:202–209. doi: 10.1016/j.jas.2014.12.013 CrossRefGoogle Scholar
  7. Brunetti A, Fabian J, Wester La Torre C, Schiavon N (2016) A combined XRF/Monte Carlo simulation study of multilayered Peruvian metal artifacts from the tomb of the priestess of Chornancap. Appl Phys A Mater Sci Process 122(6):571. doi: 10.1007/s00339-016-0096-6 CrossRefGoogle Scholar
  8. Brunetti A, Golosio B (2014) A new Monte Carlo code for simulation of the effect of irregular surfaces on X-ray spectra. Spectrochim Acta, Part B 94-95:58–62. doi: 10.1016/j.sab.2014.03.007 CrossRefGoogle Scholar
  9. Brunetti A, Golosio B, Schoonjans T, Oliva P (2015) Use of Monte Carlo simulations for cultural heritage X-ray fluorescence analysis. Spectrochim Acta B 108:15–20. doi: 10.1016/j.sab.2015.03.014 CrossRefGoogle Scholar
  10. Budd P (1990) Eneolithic arsenical copper: heat treatment and the metallographic interpretation of manufacturing processes. In: Pernicka E, Wagner GA (eds) Archaeometry ’90: International Symposium in Archaeometry. Birkhauser Verlag, Heidelberg, pp 35–44Google Scholar
  11. Cardoso JL, Guerra F (1997/1998) Análises químicas não destrutivas do espólio metálico do povoado pré-histórico de Leceia, Oeiras e seu significado no quadro da intensificação económica Calcolítica da Estremadura portuguesa. Estudos Arqueológicos de Oeiras 7:61–87Google Scholar
  12. Craddock PT (1995) Early metal mining and production. The University Press, CambridgeGoogle Scholar
  13. Ferreira OV (1961) Acerca da presença de arsénio e instrumentos encontados em Portugal. Boletim de Minas 12:1–5Google Scholar
  14. Ferreira OV (1970) in Actas do VI Congresso Internacional da Minería, 1:99–116Google Scholar
  15. Figueiredo E, Araújo MF, Silva RJC, Senna-Martinez JC, Vaz JLI (2011) Characterisation of Late Bronze Age large size shield nails by EDXRF, micro-EDXRF and X-ray digital radiography. Appl Radiat Isot 69:1205–1211. doi: 10.1016/j.apradiso.2011.04.027 CrossRefGoogle Scholar
  16. Giumlia-Mair A, Keall EJ, Shugar AN, Stock S (2002) Investigation of a copper-based hoard from the megalithic site of al-Midamman, Yemen: an interdisciplinary approach. J Archaeol Sci 29(2):195–209. doi: 10.1006/jasc.2001.0686 CrossRefGoogle Scholar
  17. Gonçalves VS, Gil FB, Seruya AI (1989) In: Gonçalves VS (ed), Megalitismo e Metalurgia no Alto Algarve Oriental. Uma aproximação integrada. UNIARQ, LisboaGoogle Scholar
  18. Hanning E, Gauß R, Goldenberg G (2010) Metal for Zambujal: experimentally reconstructing a 5000-year-old technology. Trab Prehist 67(2):287–304. doi: 10.3989/tp.2010.10040 CrossRefGoogle Scholar
  19. Hauptmann A (2007) The archaeometallurgy of copper: evidence from Faynan, Jordan. Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
  20. Hunt-Ortiz MA (2003) Prehistoric mining and metallurgy in south west Iberian Peninsula. BAR International Series 1188, Archaeopress, OxfordGoogle Scholar
  21. Jung M (2003) Material properties of copper alloys containing arsenic, antimony, and bismuth. The material of Early Bronze Age ingot torques. University of Freiberg, DissertationGoogle Scholar
  22. Junghans S, Sangmeister E, Schröder M (1968) Kupfer und Bronze in der frühen Metallzeit Europas, Studien zu den Anfängen der Metallurgie 2 (1–3). Gebrüder Mann Verlag, BerlinGoogle Scholar
  23. Lechtman H (1996) Arsenic bronze: dirty copper or chosen alloy? A view from the Americas. J Field Archaeol 23:477–514. doi: 10.2307/530550 CrossRefGoogle Scholar
  24. Lechtman H, Klein S (1999) The production of copper-arsenic alloys (arsenic bronze) by co-smelting: modern experiment, ancient practice. J Archaeol Sci 26:497–526CrossRefGoogle Scholar
  25. Manso M, Schiavon N, Queralt I, Arruda AM, Sampaio JM, Brunetti A (2015) Alloy characterization of a 7th century BC archeological bronze vase—overcoming patina constraints using Monte Carlo simulations. Spectrochim Acta, Part B 107:93–96CrossRefGoogle Scholar
  26. McKerrell H, Tylecote RF (1972) The working of copper-arsenic alloys in the Early Bronze Age and the effect on the determination of provenance. Proceedings of the Prehistoric Society 38:209–218CrossRefGoogle Scholar
  27. Montero-Ruiz I (1991) Estudio Arqueometalurgico en el Sudeste de la Peninsula Ibérica. Instituto de Estudios Almerienses, AlmeriaGoogle Scholar
  28. Müller R, Cardoso JL (2008a) The origin and use of copper at the Chalcolithic fortification of Leceia (Oeiras, Portugal). Madrider Mitteilungen 49:64–93Google Scholar
  29. Müller R, Soares AMM (2008b) Traces of early copper production at the Chalcolithic fortification of Vila Nova de São Pedro (Azambuja, Portugal). Madrider Mitteilungen 49:94–114Google Scholar
  30. Müller R, Goldenberg G, Bartelheim M, Kunst M, Pernicka E (2007) in Niece S, Hook D., Craddock PT (eds) Metals and mines. Studies in Archaeometallurgy, archetype, London, pp. 15–26Google Scholar
  31. Northover JP (1989) Properties and use of arsenic-copper alloys. In: Hauptmann A, Pernicka E, Wagner GA (eds) Old World archaeometallurgy, Der Anschnitt, Beiheft, vol 7. Deutsches Bergbaumuseum, Bochum, pp 111–118Google Scholar
  32. Oliveira DPS, Rosa DRN, Matos JX, Guimarães F, Figueiredo MO, Silva TP (2009) in Williams PJ (ed) Smart science for exploration and mining, James Cook University, Townsville, 1: 424–426Google Scholar
  33. Orestes Vidigal R, Valério P, Araújo MF, Soares AMM, Mataloto R (2015) Micro-EDXRF study of Chalcolithic copper-based artefacts from southern Portugal. X-Ray Spectrom 45(1):63–68. doi: 10.1002/xrs.2658 CrossRefGoogle Scholar
  34. Pereira F, Silva RJC, Soares AMM, Araújo MF (2013) The role of arsenic in Chalcolithic copper artefacts—insights from Vila Nova de São Pedro (Portugal). J Archaeol Sci 40(4):2045–2056. doi: 10.1016/j.jas.2012.12.015 CrossRefGoogle Scholar
  35. Pollard AM, Thomas RG, Ware DP, Williams PA (1991) Experimental smelting of secondary copper minerals: implications for Early Bronze Age metallurgy in Britain. In: Pernicka E, Wagner GA (eds) Archaeometry ‘90: International Symposium in Archaeometry. Birkhauser Verlag, Heidelberg, pp 127–136Google Scholar
  36. Robbiola L, Portier R (2006) A global approach to the authentication of ancient bronzes based on the characterization of the alloy–patina–environment system. J Cult Herit 7:1–12. doi: 10.1016/j.culher.2005.11.001 CrossRefGoogle Scholar
  37. Rovira S (2004) Tecnología metalúrgica y cambio cultural en la prehistoria de la Península Ibérica. Norba 17:9–40Google Scholar
  38. Rovira S, Montero-Ruiz I (2003) In Giumlia-Mair a, lo Schiavo F (ed) Le problème de l’étain à l’origine de la métalurgie—the problem of early tin. BAR International series 1199, OxfordGoogle Scholar
  39. Ruíz Taboada A, Montero-Ruiz I (1999) The oldest metallurgy in western Europe. Antiquity 73(282):897–903. doi: 10.1017/S0003598X00065650 CrossRefGoogle Scholar
  40. Schiavon N, Celauro A, Manso M, Brunetti A, Susanna F (2013) Iron-Age bronze statuettes in southern Portugal: combining archaeological data with EDXRF and BSEM + EDS to assess provenance and production technology. Appl Phys A Mater Sci Process 113(4):865–875. doi: 10.1007/s00339-013-7747-7 CrossRefGoogle Scholar
  41. Sabatini BJ (2015) The As-Cu-Ni system: a chemical thermodynamic model for ancient recycling. JOM 67:2984–2992. doi: 10.1007/s11837-015-1593-3 CrossRefGoogle Scholar
  42. Schiavon N, De Palmas A, Bulla C, Piga G, Brunetti A (2016) An energy-dispersive X-ray fluorescence spectrometry and Monte Carlo simulation study of Iron-Age Nuragic small bronzes (“Navicelle”) from Sardinia, Italy. Spectrochim Acta, Part B 123:42–46. doi: 10.1016/j.sab.2016.07.011 CrossRefGoogle Scholar
  43. Silva C, Soares J (1997) Economias costeiras na Pré-história do Sudoeste Português. O concheiro de Montes de Baixo. Setúbal Arqueológica 11-12:69–108Google Scholar
  44. Soares AMM, Araújo MF, Alves L, Ferraz MT (1996) In Maciel MJ (Ed) Miscellanea em Homenagem ao Professor Bairrão Oleiro, Ed. Colibri, Lisboa, pp. 553–579Google Scholar
  45. Subramanian PR, Laughlin DE (1998) The As−Cu (arsenic-copper) system. Bull Alloy Phase Diagrams 9:605–617CrossRefGoogle Scholar
  46. Tylecote RF (1976) A history of metallurgy. Metals Society, LondonGoogle Scholar
  47. Tylecote RF, Ghaznavi HA, Boydell PJ (1977) Partitioning of trace elements between the ores, fluxes, slags and metal during the smelting of copper. J Archaeol Sci 4:305–333. doi: 10.1016/0305-4403(77)90027-9 CrossRefGoogle Scholar
  48. Valera AC, Parreira J (2014) In VIII Encontro de Arqueologia do Sudoeste Peninsular 2014, pp. 745–760Google Scholar
  49. Valério P, Soares AMM, Araújo MF, Silva CT, Soares J (2007) Vestígios arqueometalúrgicos do povoado calcolítico fortificado do Porto das Carretas (Mourão). O Arqueólogo Português s IV(25):177–194Google Scholar
  50. Valério P, Soares AMM, Araújo MF, Silva RJC, Porfírio E, Serra M (2014) Arsenical copper and bronze in Middle Bronze Age burial sites of southern Portugal: the first bronzes in Southwestern Iberia. J Archaeol Sci 42:68–80. doi: 10.1016/j.jas.2013.10.039 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.HERCULES Laboratory, Palácio do VimiosoUniversity of ÉvoraÉvoraPortugal
  2. 2.CIDEHUS, Palácio do VimiosoUniversity of ÉvoraÉvoraPortugal
  3. 3.Dipartimento di Scienze Politiche, Scienze della Comunicazione e Ingegneria dell’InformazioneUniversità di SassariSassariItaly
  4. 4.Era-Arqueologia SACruz QuebradaPortugal

Personalised recommendations