Archaeological and Anthropological Sciences

, Volume 10, Issue 6, pp 1329–1346 | Cite as

The chert from the Castelltallat Formation (south-central Pyrenees): archaeometric characterisation and archaeological implications

  • David Ortega
  • Carles Roqué
  • Jordi Ibáñez
  • Elisabet Beamud
  • Juan C. Larrasoaña
  • Alberto Sáez
  • Xavier Terradas
Original Paper


Chert from the limestones and marly limestones of Castelltallat Formation (Ebro Basin) was widely used throughout prehistoric times in north-eastern Iberia to produce stone tools due to its properties and accessibility. A rough estimate indicates that this rock—either as raw material or as lithic products—was distributed mainly to the north of the outcrops, over an area of 6000–8000 km2. However, other rocks in the area have similar characteristics which can lead to confusion in the interpretation of its prehistoric use and distribution. In order to establish useful archaeometric criteria for differentiating this chert from other similar, the Castelltallat chert is characterised in petrographic, mineralogical and geochemical terms. The chert nodules are found to be homogenous at the macroscopic and microscopic level, with a significant presence of bioclasts, thus indicating they might be formed in a freshwater lake environment by the early diagenetic replacement of carbonates in shallow waters. The mineralogical composition is homogeneously uniform and of a flint type, characterised by an almost exclusive predominance of quartz, without any opaline phases, and a variable proportion of moganite. The iron oxide content is very low, whereas its chemical composition is unusually high in uranium which correlates positively with carbonate content and negatively with silica. Archaeometrical parameters are provided to reach a proper identification of tools knapped with this chert. This way, chert from Castelltallat Formation turns out to be a valuable lithological marker to evaluate the range of mobility of the human groups who lived in the north-eastern Iberia and their contacts with neighbouring areas.


Chert Archaeometry Ebro Basin Castelltallat formation Prehistory Human mobility 


Funding sources and acknowledgements

The fieldwork to obtain rock samples and the analysis of the samples was cofunded by the Direcció General del Patrimoni Cultural de la Generalitat de Catalunya and IMF-CSIC, within the framework of an interinstitutional collaboration agreement for the development of the Catalan Lithotheque of siliceous rocks (LITOcat project). Specific studies on the petrological characterisation of Castelltallat chert and its prehistoric use were carried out within the research project ‘Aprofitament prehistòric i històric del sílex a Catalunya: contextos extractius i de primera transformació’, funded by the Department of Culture of the Government of Catalonia (ref. núm. 2014/100778). The significance of human use and scope of distribution of Castelltallat chert are being approached within the project ‘Productions, technical variability and technological innovation in the Neolithic’, funded by the Spanish Ministry of Economy and Competitiveness (Grant HAR2016–76534-C2–2-R).

The authors would like to thank the anonymous reviewers of the paper for the corrections and suggestions that have contributed to improving it.


  1. Anadón P, Cabrera L, Colldeforns B, Sáez A (1989) Los sistemas lacustres del Eoceno superior y Oligoceno del sector oriental de la Cuenca del Ebro. Acta Geologica Hispanica 24:205–230Google Scholar
  2. Arenas C, Pardo G (1999) Latest Oligocene-Late Miocene lacustrine systems of the north-central part of the Ebro Basin (Spain): sedimentary facies model and palaeogeographic synthesis. Palaeogeogr Palaeoclimatol Palaeoecol 151:127–148. doi: 10.1016/S0031-0182(99)00025-5 CrossRefGoogle Scholar
  3. Arenas C, Alonso Zarza AM, Pardo G (1999) Dedolomitization and other early diagenetic processes in Miocene lacustrine deposits, Ebro Basin (Spain). Sediment Geol 125:23–45. doi: 10.1016/S0037-0738(98)00146-8 CrossRefGoogle Scholar
  4. Arribas A (1992) Yacimientos españoles de Uranio. In: García Guinea J, Martínez Frías J (eds) Recursos minerales de España. CSIC, Madrid, pp 1403–1419Google Scholar
  5. Barnes CE, Cochran JK (1991) Geochemistry of uranium in Black Sea sediments. Deep Sea Res Part A Oceanogr Res Pap 38:1237–1254. doi: 10.1016/S0198-0149(10)80032-9 CrossRefGoogle Scholar
  6. Bertouille H (1989) Théories physiques et mathématiques de la taille des outils préhistoriques. CNRS, BordeauxGoogle Scholar
  7. Boix J (2012) El tratamiento térmico en rocas silíceas, un procedimiento técnico para la talla. Trab Prehist 69:37–50. doi: 10.3989/tp.2012.12078 CrossRefGoogle Scholar
  8. Borradaile G, Stewart JD, Ross WA (1998) Characterizing stone tools by rock-magnetic methods. Geoarchaeology 13:73–91CrossRefGoogle Scholar
  9. Bustillo MA (2002) Aparición y significado de la moganita en las rocas de la sílice: una revisión. J Iber Geol 28:157–166Google Scholar
  10. Bustillo MA (2010) Silicification of continental carbonates. In: Alonso-Zarza AM, Tanner LH (eds) Carbonates in continental settings: geochemistry, diagenesis and applications. Elsevier, Oxford, pp 153–178CrossRefGoogle Scholar
  11. Bustillo MA, Pérez-Jiménez JL (2005) Características diferenciales y génesis de los niveles silíceos explotados en el yacimiento arqueológico de Casa Montero (Vicálvaro, Madrid). Geogaceta 38:243–246Google Scholar
  12. Bustillo MA, Castañeda N, Capote M, Consuegra S, Criado C, Díaz-del-Río P, Orozco T, Pérez-Jiménez JL, Terradas X (2009) Is the macroscopic classification of flint useful? A petroarchaeological analysis and characterization of flint raw materials from the Iberian Neolithic mine of Casa Montero. Archaeometry 51:175–196. doi: 10.1111/j.1475-4754.2008.00403.x CrossRefGoogle Scholar
  13. Bustillo MA, Pérez-Jiménez JL, Bustillo M (2012) Caracterización geoquímica de rocas sedimentarias formadas por silicificación como fuentes de suministro de utensilios líticos (Mioceno, cuenca de Madrid). Revista Mexicana de Ciencias Geológicas 29:233–247Google Scholar
  14. Bustillo MA, Plet C, Alonso-Zarza AM (2013) Root calcretes and uranium-bearing silcretes at sedimentary discontinuities in the Miocene of the Madrid Basin (Toledo, Spain). J Sediment Res 83:1130–1146. doi: 10.2110/jsr.2013.85 CrossRefGoogle Scholar
  15. Cabrera L, Sáez A (1987) Coal deposition in carbonate rich shallow lacustrine systems: the Calaf and Mequinenza sequences (Oligocene, eastern Ebro Basin, NE Spain). J Geol Soc 144:451–461. doi: 10.1144/gsjgs.144.3.0451 CrossRefGoogle Scholar
  16. Castillo M, Torró L, Campeny M, Villanova C, Tauler E, Melgarejo JC (2009) Mineralogía del depósito de uranio Eureka (Castell-estaó, Pirineo, Catalunya). Macla 11:53–54Google Scholar
  17. Chappaz A, Gobeil C, Tessier A (2010) Controls on uranium distribution in lake sediments. Geochim Cosmochim Acta 74:203–214. doi: 10.1016/j.gca.2009.09.026 CrossRefGoogle Scholar
  18. Church T (1994) Lithic ressources studies. A sourcebook for archaeologist. University of Tulsa, TulsaGoogle Scholar
  19. Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Glob Biogeochem Cycles 16:1121. doi: 10.1029/2002GB001894 CrossRefGoogle Scholar
  20. Costa E, Garcés M, López-Blanco M, Beamud E, Gómez-Paccard M, Larrasoaña JC (2010) Closing and continentalization of the south Pyrenean foreland basin (NE Spain): magnetochronological constraints. Basin Res 22:904–917. doi: 10.1111/j.1365-2117.2009.00452.x Google Scholar
  21. Costa E, Garcés M, Sáez A, Cabrera L, López-Blanco M (2011) The age of the “Grande Coupure” mammal turnover: new constraints from the Eocene–Oligocene record of the eastern Ebro Basin (NE Spain). Palaeogeogr Palaeoclimatol Palaeoecol 301:97–107. doi: 10.1016/j.palaeo.2011.01.005 CrossRefGoogle Scholar
  22. Del Santo G, García-Sansegundo J, Sarasa L, Torrebadella J (2000) Estratigrafía y estructura del Terciario en el sector oriental de la Cuenca del Ebro entre Solsona y Manresa (NE de España). Revista de la Sociedad Geologica de España 13:265–278Google Scholar
  23. Dunlop DJ, Özdemir Ö (1997) Rock magnetism. Fundamentals and frontiers. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. Feist M, Anadón P, Cabrera L, Choi SJ, Colombo F, Sáez A (1994) Upper Eocene–lowermost Miocene charophyte succession in the Ebro Basin (Spain). Contribution to the charophyte biozonation in Western Europe. Newsl Stratigr 30:1–32CrossRefGoogle Scholar
  25. Fuertes-Prieto MN, Neira-Campos A, Fernández-Martínez E, Gómez-Fernández F, Alonso-Herrero E (2014) Mucientes chert in the northern Iberian plateau (Spain). J Lithic Stud 1:117–135. doi: 10.2218/jls.v1i1.785 CrossRefGoogle Scholar
  26. Gaspar-Escribano JM, Van Wees JD, Ter Voorde M, Cloetingh S, Roca E, Cabrera L, Muñoz JA, Ziegler PA, Garcia-Castellanos D (2001) Three-dimensional flexural modelling of the Ebro Basin (NE Iberia). Geophys J Int 145:349–367CrossRefGoogle Scholar
  27. Götze J (2012) Classification, mineralogy and industrial potential of SiO2 minerals and rocks. In: Götze J, Möckel R (eds) Quartz: deposits. Mineralogy and analytics. Springer-Verlag, Berlin, pp 1–27CrossRefGoogle Scholar
  28. Götze J, Gaft M, Möckel R (2015) Uranium and uranyl luminescence in agate/chalcedony. Mineral Mag 79:985–995. doi: 10.1180/minmag.2015.079.4.08 CrossRefGoogle Scholar
  29. Graetsch HA, Grünberg JM (2012) Microstructure of flint and other chert raw materials. Archaeometry 54:18–36. doi: 10.1111/j.1475-4754.2011.00610.x CrossRefGoogle Scholar
  30. Gromet PL, Dymek PF, Haskin LA, Korotev RL (1984) The “north American shale composite”: its compilation, major and trace element characteristics. Geochim Cosmochim Acta 48:2469–2482. doi: 10.1016/0016-7037(84)90298-9 CrossRefGoogle Scholar
  31. Heaney PJ, Post JE (1992) The widespread distribution of a novel silica polymorph in microcrystalline quartz varieties. Science, New Series 255:441–443Google Scholar
  32. Hesse R (1989) Silica diagenesis: origin of inorganic and replacement cherts. Earth Sci Rev 26:253–284. doi: 10.1016/0012-8252(89)90024-X CrossRefGoogle Scholar
  33. Inizan ML, Reduron M, Roche H, Tixier J (1995) Technologie de la pierre taillée. CNRS, MeudonGoogle Scholar
  34. Jacka AD (1974) Replacement of fossils by length-slow chalcedony and associated dolomitization. J Sediment Petrol 44:421–427Google Scholar
  35. Knauth LP (1979) A model for the origin of chert in limestone. Geology 7:274–277. doi: 10.1130/0091-7613(1979)7<274:AMFTOO>2.0.CO;2 CrossRefGoogle Scholar
  36. Knauth LP (1994) Petrogenesis of chert. Rev Mineral Geochem 29:233–258Google Scholar
  37. Kruiver PP, Passier HF (2001) Coercivity analysis of magnetic phases in sapropel S1 related to variations in redox conditions, including an investigation of the S ratio. Geochem Geophys Geosyst 2:1–21. doi: 10.1029/2001GC000181 CrossRefGoogle Scholar
  38. Lacombe S (2007) Aproximació petroarqueològica del sílex dels nivells azilians de la Balma de la Margineda. In: Guilaine J, Barbaza M, Martzluff M (eds) Les excavaciones a la Balma de la Margineda (1979–1991), vol IV. Gobern d’Andorra, Andorra, pp 540–573Google Scholar
  39. Larrasoaña JC, Beamud E, Olivares M, Murelaga X, Tarriño A, Baceta JI, Etxebarria N (2016) Magnetic properties of cherts from the Basque-Cantabrian Basin and surrounding regions: archaeological implications. Front Earth Sci 4:1–8. doi: 10.3389/feart.2016.00035 CrossRefGoogle Scholar
  40. Liu Q, Roberts AP, Larrasoaña JC, Banerjee SK, Guyodo Y, Tauxe L, Oldfiled F (2012) Environmental magnetism: principles and applications. Rev Geophys 50:1–50. doi: 10.1029/2012RG000393 CrossRefGoogle Scholar
  41. López-Martínez N, Arribas ME, Robador A, Vicens E, Ll A (2006) Los carbonatos danienses de (Unidad 3) de la Fm Tremp (Pirineos Sur-Centrales): paleogeografía y relación con el límite Cretácico-Terciario. Rev Soc Geol Esp 19:233–255Google Scholar
  42. Loucaides S, Van Cappellen P, Behrends T (2008) Dissolution of biogenic silica from land to ocean: role of salinity and pH. Limnol Oceanogr 53:1614–1621CrossRefGoogle Scholar
  43. Lozano JA, Morgado A, Puga E, Martín-Algarra A (2010) Explotaciones del sílex tipo Turón (Málaga, España): localización y caracterización petrológica y geoquímica. Geogaceta 48:163–166Google Scholar
  44. Luedtke BE (1992) An Archaeologist’s guide to chert and Flint. University of California, Los AngelesGoogle Scholar
  45. Luzón A, González A (2000) Sedimentology and evolution of a Paleogene-Neogene shallow carbonate lacustrine system, Ebro Basin, northeastern Spain. In: Gierlowski-Kordesh EH, Kelts KR (eds) Lake basins through space and time, APPG studies in geology 46. Boulder, Tulsa, pp 407–416Google Scholar
  46. Luzón A, Rodríguez A (2003) Los sistemas aluviales Oligo-Miocenos del margen norte de la Cuenca del Ebro: caracterización sedimentaria y síntesis paleogeográfica. Revista de la Sociedad Geologica de España 16:239–255Google Scholar
  47. Macias I, Díaz M, Estrada R, Rampone G (1987) Facies de abanico fluvial en los afloramientos orientales de la Formación Peraltilla. Acta Geologica Hispanica 21-22:19–26Google Scholar
  48. Mangado X, Morales JI, Oms X, Rey M, Sánchez M (2012) Estudio de los restos líticos de la Cova Colomera (Prepirineo de Lleida) entre 5220 y 1660 cal BC. Análisis arqueopetrológico de las materias primas silíceas y posibles áreas de captación. In: Borrell M et al (eds) Xarxes al Neolític. Circulació i intercanvi de matèries, productes i idees a la Mediterrània occidental. Museu de Gavà, Gavà, pp 155–161Google Scholar
  49. Mangado X, Sánchez M, Bartrolí R, Tejero JM, Fullola JM, Avezuela B, Petit MA, Mercadal O (2014) Silex et coquillages. Approche à l’identification des territoires socio-économiques des Magdaleniens du Versant sud des Pyrenées catalans. In: Otte M, Le Brun-Riscalens F (eds) Modes de contacts et de déplacements au Paléolithique eurasiatique. Université de Liège, Liège, pp 473–489Google Scholar
  50. Mangado X, Sánchez M, Martínez-Grau H, González-Olivares C (2016) Prehistoric chert mining evidence in Serra Llarga (Castelló de Farfanya, Spain). J Lithic StudGoogle Scholar
  51. Martin M (1974) Sobre la petrogenesis de algunas litofacies españolas con fases urano-orgánicas. Bol Geol Min 85:561–581Google Scholar
  52. Martínez J, Mora R (2009) Balma Guilanyà (Prepirineo de Lleida) y el Aziliense en el noreste de la Península Ibérica. Trab Prehist 66:45–60. doi: 10.3989/tp.2009.09021 CrossRefGoogle Scholar
  53. Martínez J, de la Torre I, Mora R, Casanova J (2010) Technical variability and changes in the pattern of settlement at Roca dels Bous (southeastern pre-Pyrenees, Spain). In: Conard NJ, Delagnes A (eds) Settlement dynamics of the middle Paleolithic and middle stone age. Kerns Verlag, Tübingen, pp 485–507Google Scholar
  54. Mason B, Moore CB (1982) Principles of geochemistry. Wiley, New YorkGoogle Scholar
  55. Massey MS, Lezama-Pacheco JS, Nelson J, Fendorf S, Maher K (2014) Uranium incorporation into amorphous silica. Environ Sci Technol 48:8636–8644. doi: 10.1021/es501064m CrossRefGoogle Scholar
  56. Matteson S, Avara MJ, Nguyen CV, Kim SH (2005) RBS characterization of uranium in flint and chert. Nucl Inst Methods Phys Res B 241:465–469. doi: 10.1016/j.nimb.2005.07.057 CrossRefGoogle Scholar
  57. Mazzucco N, Gassiot E, Ortega D, Clemente I, Rodríguez-Antón D (2013) Lithic procurement at the Cova del Sardo between the V-III millennium cal BC: data on mobility strategies. Archeologia Postmedievale 17:51–60Google Scholar
  58. McBride EF, Abdel-Wahab A, El-Younsy ARM (1999) Origin of spheroidal chert nodules, Drunka formation (lower Eocene), Egypt. Sedimentology 46:733–755. doi: 10.1046/j.1365-3091.1999.00253.x CrossRefGoogle Scholar
  59. Meece DE, Benninger LK (1993) The coprecipitation of Pu and other radionuclides with CaCO3. Geochim Cosmochim Acta 57:1447–1458. doi: 10.1016/0016-7037(93)90005-H CrossRefGoogle Scholar
  60. Moh’d BK, Powell JH (2010) Uranium distribution in the upper cretaceous-tertiary Belqa group, Yarmouk Valley, Northwest Jordan. Jordan J Earth Environ Sci 3:49–62Google Scholar
  61. Morgado A, Lozano JA, Pelegrin J (2011) Las explotaciones prehistóricas del silex de la formación Milanos (Granada, España). Menga - Revista de Prehistoria de Andalucía 2:135–155Google Scholar
  62. Murray RW (1994) Chemical criteria to identify the depositional environment of chert: general principles and applications. Sediment Geol 90:213–232. doi: 10.1016/0037-0738(94)90039-6 CrossRefGoogle Scholar
  63. Odell GH (2004) Lithic analysis. Kluwer Academic, New YorkCrossRefGoogle Scholar
  64. Ortega D, Terradas X, Roqué C, Ibáñez J, Beamud E, Larrasoaña JC (2016) El sílex de la unidad de calizas de Montmaneu (sector oriental de la Cuenca del Ebro). Geogaceta 60Google Scholar
  65. Ortí F (1990) Las formaciones evaporíticas del Terciario continental de la zona de contacto entre la Cuenca del Ebro y los Catalánides. In: Ortí F, Salvany JM (eds) Formaciones evaporíticas de la Cuenca del Ebro y cadenas periféricas, y de la zona de Levante. ENRESA-Universidad de Barcelona, Barcelona, pp 133–154Google Scholar
  66. Palomo A, Gibaja JF, Ortega D, Alonso N, Marín D, Moya A (2012) La industria lítica tallada del asentamiento de Minferri (Juneda, Lleida) a finales del III/primera mitad del II milenio cal. BC. Cypsela, revista de prehistòria i protohistòria 19:103–122Google Scholar
  67. Parcerisas J (1999) Análisis petroarqueológico de la Unidad UAS5 de la Cova de l’Estret de Tragó. In: Pallí L, Roqué C (eds) Avances en el estudio del Cuaternario español. Universitat de Girona, Girona, pp 271–276Google Scholar
  68. Pardo G (2004) La Cuenca del Ebro. In: Vera JA (ed) Geología de España. Sociedad Geológica de España e Instituto Geológico y Minero de España, Madrid, pp 533–543Google Scholar
  69. Piper DZ, Bau M (2013) Normalized rare earth elements in water, sediments, and wine: identifyng sources and environmental redox conditions. Am J Anal Chem 4:69–83. doi: 10.4236/ajac.2013.410A1009 CrossRefGoogle Scholar
  70. Rosell J, Linares R, Llompart C (2001) El Garumniense prepirenaico. Revista de la Sociedad Geologica de España 14:47–56Google Scholar
  71. Roy M, Tarriño A, Benito-Calvo A, Mora R, Martínez-Moreno J (2013) Aprovisionamiento de sílex en el Prepirineo oriental durante el Paleolítico superior antiguo: el nivel arqueológico 497C de Cova Gran (Santa Linya, Lleida). Trab Prehist 70:7–27. doi: 10.3989/tp.2013.00 CrossRefGoogle Scholar
  72. Sáez A (1987) Estratigrafía y sedimentología de las formaciones lacustres del tránsito Eoceno-oligoceno del NE de la Cuenca del Ebro. PhD Thesis, Universidad de BarcelonaGoogle Scholar
  73. Sáez A, Anadón P, Herrero MH, Moscariello A (2007) Variable style of transition between Paleogene fluvial fan and lacustrine systems, southern Pyrenean foreland, NE Spain. Sedimentology 54:367–390. doi: 10.1111/j.1365-3091.2006.00840.x CrossRefGoogle Scholar
  74. Sánchez M (2014) Detecting human mobility in the Pyrenees through the analysis of chert tools during the upper Palaeolithic. J Lithic Stud 1:263–279. doi: 10.2218/jls.v1i1.778 CrossRefGoogle Scholar
  75. Siever R (1962) Silica solubility, 0° -200 °C., and the diagenesis of siliceous sediments. J Geol 70:127–150CrossRefGoogle Scholar
  76. Sturchio NC, Antonio MR, Soderholm L, Sutton SR, Brannon JC (1998) Tetravalent uranium in calcite. Science 281:971–973. doi: 10.1126/science.281.5379.971 CrossRefGoogle Scholar
  77. Tarriño A, Terradas X (2013) Materias primas líticas. In: García-Diez M, Zapata L (eds) Métodos y técnicas de análisis y estudio en Arqueología prehistórica. De lo técnico a la reconstrucción de los grupos humanos. UPV/EHU, Vitoria-Gasteiz, pp 439–452Google Scholar
  78. Tarriño A, Olivares M, Etxebarria N, Baceta JI, Larrasonaña JC, Yusta I, Pizarro JL, Cava A, Barandiarán I, Murelaga X (2007) El sílex de tipo Urbasa. Caracterización petrológica y geoquímica de un marcador litológico en yacimientos arqueológicos del Suroeste europeo durante el Pleistoceno superior y Holoceno inicial. Geogaceta 43:127–130Google Scholar
  79. Tarriño A, Duarte E, Santamaría D, Martínez L, Fernández J, Suárez P, Rodríguez V, Forcelledo E, de la Rasilla M (2013) El sílex de Piloña. Caracterización de una nueva fuente de materia prima lítica en la Prehistoria de Asturias. In: de la Rasilla M (ed) Estudios en homenaje a FJ Fortea. Ediciones de la Universidad de Oviedo, Oviedo, pp 115–132Google Scholar
  80. Tarriño A, Elorrieta I, García-Rojas M (2015) Flint as raw material in prehistoric times: Cantabrian Mountain and western Pyrenees data. Quat Int 364:94–108. doi: 10.1016/j.quaint.2014.10.061 CrossRefGoogle Scholar
  81. Taylor SR, McClennan SM (1985) The continental crustal: its composition and evolution. Blacwell, OxfordGoogle Scholar
  82. Terradas X (2001) La gestión de los recursos minerales en las sociedades cazadoras-recolectoras. CSIC, BarcelonaGoogle Scholar
  83. Terradas X (2012) Estudo do aprovisionamiento de matérias-primas de naturaleza mineral. In: Gibaja JF, Carvalho AF (eds) Introdução ao estudo da pedra lascada. Edições Colibrí, Lisboa, pp 9–18Google Scholar
  84. Terradas X, Ortega D, Boix J (2012) El projecte LITOCAT: creació d’una litoteca de referència sobre la disponibilitat de roques silícies a Catalunya. Tribuna d’Arqueologia 2010-2011:131–150Google Scholar
  85. Terradas X, Ortega D, Marín D, Masclans A, Roqué C (2016) Neolithic flint quarries of Montvell (Catalan pre-Pyrenees, Spain). In: Pereira T, Bicho N, Terradas X (eds) Raw materials exploitation in prehistory: sourcing, processing and distribution. Cambrige Scholars Publishing, NewcastleGoogle Scholar
  86. Thacker P, Ellwood B (2002) The magnetic susceptibility of cherts: archaeological and geochemical implications of source variation. Geoarchaeology 17:465–482. doi: 10.1002/gea.10023 CrossRefGoogle Scholar
  87. Valero L, Garcés M, Cabrera L, Costa E, Sáez A (2014) 20 Myr of eccentricity paced lacustrine cycles in the Cenozoic Ebro Basin. Earth Planet Sci Lett 408:183–193. doi: 10.1016/j.epsl.2014.10.007 CrossRefGoogle Scholar
  88. Wright P (1990) Lacustrine carbonates. In: Tucker ME, Wright VP (eds) Carbonate sedimentology. Blackwell Science, Malden-Oxford, pp 164–190Google Scholar
  89. Yang Y, Fang X, Li M, Galy A, Koutsodendris A, Zhang W (2015) Paleoenvironmental implications of uranium concentrations in lacustrine calcareous clastic-evaporite deposits in the western Qaidam Basin. Palaeogeogr Palaeoclimatol Palaeoecol 417:422–431. doi: 10.1016/j.palaeo.2014.10.002 CrossRefGoogle Scholar
  90. Young RA (1993) The Rietveld method. International Union of Crystallography, OxfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.CSIC – Institució Milà i Fontanals, Archaeology of Social DynamicsBarcelonaSpain
  2. 2.Department de Environmental SciencesUniversitat de GironaGironaSpain
  3. 3.Laboratory of X-Ray DiffractionCSIC – Institut de Ciències de la Terra Jaume AlmeraBarcelonaSpain
  4. 4.Laboratory of PaleomagnetismCCiTUB and CSIC—Institut de Ciències de la Terra Jaume AlmeraBarcelonaSpain
  5. 5.Instituto Geológico y Minero de España—Unidad de ZaragozaZaragozaSpain
  6. 6.Department of Earth and Ocean DynamicsUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations