Archaeological and Anthropological Sciences

, Volume 10, Issue 5, pp 1007–1022 | Cite as

Characterization of concrete from Roman buildings for public spectacles in Emerita Augusta (Mérida, Spain)

  • María Isabel Mota-LópezEmail author
  • Rafael Fort
  • Mónica Álvarez de Buergo
  • Antonio Pizzo
  • Rubén Maderuelo-Sanz
  • Juan Miguel Meneses-Rodríguez
  • Duygu Ergenç
Original Paper


The aim of this work is to characterize the original concrete from Roman buildings for public spectacles, theatre and amphitheatre, from Emerita Augusta, Mérida, Spain. An advanced knowledge of the Roman concrete composition is required for a reliable restoration and preservation of these ancient monuments. The concrete was studied through mineralogical (optical polarized microscopy and X-ray diffraction) and petrophysical (bulk and real density, open porosity to water and Hg, mechanical strength and ultrasonic velocity) analyses. With this work, it is possible to fill the gap that exists in this field and the characterization of the materials used in the Roman concrete from these two buildings, never previously studied, despite the significance of this archaeological ensemble, declared a World Heritage Site by UNESCO in 1993. The results allowed us to determine the composition of the Roman concrete and to infer the provenance of the aggregates used in these monuments.


Roman concrete Heritage Mineralogical analysis Petrophysical analysis Provenance 



Funding for this study was provided by the Autonomous Community of Madrid under the following programmes: CLIMORTEC (National Project BIA2014-53911-R) from the Ministry of Economy and Competitiveness, GEOMATERIALES 2 (S2013/MIT-2914) and the Operational Programme for Cross-Border Cooperation: Spain-Portugal (POCTEP-RITECA) 2007-2013. The authors acknowledge the Consortium Monumental Historical-Artistic and Archaeological City of Mérida for providing us with legal authorization for sampling the monuments.


  1. Álvarez JI, Martin A, Garcia Casado PJ, Navarro I, Zornoza A (1999) Methodology and validation of a hot hydrochloric acid attack for the characterization of ancient mortars. Cem Concr Res 29(7):1061–1066CrossRefGoogle Scholar
  2. Arandigoyen M, Alvarez J (2006) Blended pastes of cement and lime: pore structure and capillary porosity. Appl Surf Sci 252:8077–8085CrossRefGoogle Scholar
  3. Arandigoyen M, Alvarez J (2007) Pore structure and mechanical properties of cement-lime mortars. Cem Concr Res 37:767–775CrossRefGoogle Scholar
  4. Bakolas A, Biscontin G, Moropoulou A, Zendri E (1998) Characterization of structural byzantine mortars by thermogravimetric analysis. Thermochim Acta 321:151–160CrossRefGoogle Scholar
  5. Baronio G, Binda L (1986) Indagine sull’ aderenza tra legante e laterizio in malte ed intonachi di ‘cocciopesto’. Bolletino d’ Arte 35-36:109–115Google Scholar
  6. Bendala Galán M, Durán Cabello R (1995) El anfiteatro de Augusta Emerita: rasgos arquitectónicos y problemática urbanística y cronológica, en el anfiteatro en la Hispania romana. Coloquio Internacional, Mérida , pp. 247–26426-28 de Noviembre de 1992Google Scholar
  7. Borges C, Santos Silva A, Veiga R (2014) Durability of ancient lime mortars in humid environment. Constr Build Mater 66:606–620CrossRefGoogle Scholar
  8. Cizer O, Van Balen K, Van Gemert D, Elsen J (2008) Blended lime–cement mortars for conservation purposes: microstructure and strength development. In: Structural analysis of historic construction: preserving safety and significance. Proceedings of the 6th international conference on structural analysis of historic construction, SAHC08 2, United Kingdom, 965–972Google Scholar
  9. Collepardi M (1990) Degradation and restoration of masonry walls of historical buildings. Mater Struct 23(2):81–102CrossRefGoogle Scholar
  10. Chen X, Wu S, Zhou J (2013) Influence of porosity on compressive and tensile strength of cement mortar. Constr Build Mater 40:869–874CrossRefGoogle Scholar
  11. D’Ambrosio E, Marra F, Cavallo A, Gaeta M, Ventura G (2015) Provenance materials for Vitruvius’ harenae fossiciae and pulvis puteolanis: geochemical signature and historical-archaeological implications. J Archaeol Sci Rep 2:186–203Google Scholar
  12. Drdácky M, Fratini F, Frankeova D, Slizkova Z (2013) The Roman mortars used in the construction of the Ponte di Augusto (Narni, Italy). A comprehensive assessment. Constr Build Mater 38:1117–1128CrossRefGoogle Scholar
  13. Durán Cabello RM (2004) El teatro y el anfiteatro de Augusta Emerita. Contribución al conocimiento histórico de la capital de Lusitania. Archaeopress, Oxford BAR International Series; 1207Google Scholar
  14. Elpida-Chrissy A, Eleni-Eva T, Elizabeth V (2008) Lime–pozzolan-cement compositions for the repair and strengthening of historic structures. In: International conference HMC 08—historical mortars conference: characterization, diagnosis, repair and compatibility. Lisbon, Portugal: LNECGoogle Scholar
  15. Elsen J (2006) Microscopy of historic mortars-a review. Cem Concr Res 36:1416–1424CrossRefGoogle Scholar
  16. Farci A, Floris D, Meloni P (2005) Water permeability vs. porosity in samples of Roman mortars. J Cult Heritage 6:55–59CrossRefGoogle Scholar
  17. Flatt RJ (2002) Salt damage in porous materials: how high supersaturations are generated. J Crys Growth 242:435–454CrossRefGoogle Scholar
  18. Fernández-Caliani JC, Galán E, Liso MJ (1996) Mineralogía, geoquímica y evolución diagenética de los materiales carbonatados del área de Mérida (Badajoz). Estudios Geol 52:3–9CrossRefGoogle Scholar
  19. Fort R, Álvarez de Buergo M, Pérez-Montserrat E, Varas MJ (2010) Characterisation of monzogranitic batholiths as a supply source for heritage construction in the northwest of Madrid. Eng Geol 115:149–157CrossRefGoogle Scholar
  20. Franquelo ML, Robador MD, Ramírez-Valle V, Duran A, Jiménez de Haro MC, Pérez-Rodríguez JL (2008) Roman ceramics of hydraulic mortars used to build the Mithraeum House of Mérida, Spain. J Therm Anal Cal 92:331–335CrossRefGoogle Scholar
  21. Genestar C, Pons C, Más A (2006) Analytical characterisation of ancient mortars from the archaeological Roman city of Pollentia (Balearic Islands, Spain). Anal Chem Acta 557:373–379CrossRefGoogle Scholar
  22. Giavarini C, Ferretti AS, Santarelli ML (2006) Mechanical characteristics of Roman “opus caementicium”. In: Kourkoulis SK (ed) Fracture and failure of natural building stones. Springer, Berlin, pp. 107–120CrossRefGoogle Scholar
  23. Gleize PJP, Motta EV, Silva EV (2009) Roman HR. characterization of historical mortars from Santa Catarina (Brazil). Cem Concr Com 31(5):342–346CrossRefGoogle Scholar
  24. Gonzalo JC (1987). Petrología y estructura del basamento en el área de Mérida (Extremadura Central). Doctoral Thesis. Universidad de SalamancaGoogle Scholar
  25. Hughes D, Swann S, Gardner A (2007) Roman cement: part one, its origins and properties. J Archit Conserv 13:21–36CrossRefGoogle Scholar
  26. Kramar S, Zala V, Urosevic M, Körner W, Mauko A, Mirtiĉ B, Lux J, Mladenovic A (2011) Mineralogical and microstructural studies of mortar from the bath complex of the Roman Villa rustica near Moŝnje (Slovenia). Mat Charac 62:1042–1057CrossRefGoogle Scholar
  27. Laskar AI, Kumar R, Bhattacharjee B (1997) Some aspects of evaluation of concrete through mercury intrusion porosimetry. Cem Concr Res 27(1):93–105CrossRefGoogle Scholar
  28. Liñán E, Perejón A (1981) El Cámbrico inferior de la Unidad de Alconera, Badajoz (SO España). Bol R Soc Esp Hist Nat (Sec Geol) 79:125–148Google Scholar
  29. Lourenço P (2006) Recommendations for restoration of ancient buildings and the survival of a masonry chimney. Constr Build Mater 20:239–251CrossRefGoogle Scholar
  30. MAGNA (2003) Mapa Geológico de España 1:50.000. Instituto Técnológico Geominero de España, Mérida (777) 69 ppGoogle Scholar
  31. Malacrino CG (2010) Constructing the ancient world. Architectural techniques of the Greeks and RomansGoogle Scholar
  32. Malinowski R (1979) Concrete and mortar in ancient aqueducts. Concr Int 1:66–76Google Scholar
  33. Malinowsky R (1991) Prehistory of concrete. Concr Int 13:62–68Google Scholar
  34. Marra F, Danti A, Gaeta M (2015) The volcanic aggregate of ancient Roman mortars from the Capitoline Hill: petrographic criteria for identification of Rome’s “pozzolans” and historical implications. J Volc Geo Res 308:113–126CrossRefGoogle Scholar
  35. Mateos P (2001) Augusta Emerita. La investigación arqueológica en una ciudad de época romana. AespA 74:183–208CrossRefGoogle Scholar
  36. Mateos P, Pizzo A (2011) Los edificios de ocio y representación. El teatro y el anfiteatro de Augusta Emerita. In: Actas Congreso Internacional 1910–2010: El Yacimiento Emeritense, 173–194Google Scholar
  37. Moropoulou A, Bakolas A, Bisbikou K (1995) Characterization of ancient, byzantine and later historic mortars by thermal analysis and X-ray diffraction techniques. Thermochim Acta 269:779–795CrossRefGoogle Scholar
  38. Moropoulou A, Cakmak AS, Biscontin G (1998a) Criteria and methodology to evaluate the Hagia Sophia crushed brick/lime mortars. Journal of the European Study Group on Physical, Chemical, Biological and Mathematical Techniques Applied to Archaeology 55:39–54Google Scholar
  39. Moropoulou A, Maravelaki-Kalaitzaki P, Borboudakis M, Bakolas A, Michailidis P, Chronopoulos M (1998b) Historic mortars technologies in Crete and guidelines for compatible restoration mortars. Journal of the European Study Group on Physical, Chemical, Biological and Mathematical Techniques Applied to Archaeology 55:55–72Google Scholar
  40. Moropoulou A, Bakolas A, Bisbikou K (2000) Investigation of the technology of historic mortar. J Cult Herit 1(1):45–58CrossRefGoogle Scholar
  41. Moropoulou A, Cakmak AS, Biscontin G, Bakolas A, Zendri E (2003) Advanced Byzantine cement based composites resisting earthquake stresses: the crushed brick/lime mortars of Justinian’s Hagia Sophia. Constr Build Mater 16:543–552CrossRefGoogle Scholar
  42. Moropoulou A, Bakolas A, Anagnostopoulou S (2005) Composite materials in ancient structures. Cem Concr Com 27:295–300CrossRefGoogle Scholar
  43. Mosquera M, Benitez D, Perry S (2002) Pore structure in mortars applied on restoration: effect on properties relevant to decay of granite buildings. Cem Concr Res 32:1883–1891CrossRefGoogle Scholar
  44. Ortiz P, Antúnez V, Martín JM, Ortiz R, Vázquez MA, Galán E (2014) Approach to environmental risk analysis for the main monuments in a historical city. J Cult Herit 15(4):432–440CrossRefGoogle Scholar
  45. Paama L, Pitkanen I, Ronkkomaki H, Peramaki P (1998) Thermal and infrared spectroscopic characterization of historical mortars. Thermochim Acta 320(1–2):27–33Google Scholar
  46. Pacheco-Torgal F, Faria J, Jalali S (2012) Some considerations about the use of lime–cement mortars for building conservation purposes in Portugal: a reprehensible option or a lesser evil? Constr Build Mater 30:488–494CrossRefGoogle Scholar
  47. Pavía S, Bolton J (2000) Stone, brick of mortar: historical, use decay and conservation of building material in Ireland. Ed Wordwell LdtGoogle Scholar
  48. Pavía S, Caro S (2008) An investigation of Roman mortar technology through the petrographic analysis of archaeological material. Constr Build Mater 22:1807–1811CrossRefGoogle Scholar
  49. Pizzo A (2007) Las técnicas constructivas de la arquitectura pública de Augusta Emérita. PhD Thesis, Universidad Autónoma de Madrid, October, 2007Google Scholar
  50. Robador MD, Pérez-Rodríguez JL, Durán A (2010) Hydraulic structures of the Roman Mithraeum house in Augusta Emerita, Spain. J Arch Sci 37:2426–2432CrossRefGoogle Scholar
  51. Roy DM, Langton C (1989) Studies of ancient concretes as analogs of cementitious sealing materials for repository in Tuff. L A- 11527-MS. Los Alamos National LaboratoryGoogle Scholar
  52. Sánchez-Moral S, García-Guinea J, Luque L, González-Martín R, López-Arce P (2004) Carbonation cinetics in roman-like lime mortars. Mater Constr 54:23–37CrossRefGoogle Scholar
  53. Sandrolini F, Franzoni E (2010) Characterization procedure for ancient mortars’ restoration: the plasters of the Cavallerizza courtyard in the Ducal Palace in Mantua (Italy). Mat Charac 61:97–104CrossRefGoogle Scholar
  54. Scherer GW (1999) Crystallization in pores. Cem Concr Res 29(8):1347–1358CrossRefGoogle Scholar
  55. Theodoridou M, Ioannou I, Philokyprou M (2013) New evidence of early use of artificial pozzolanic material in mortars. J Arch Sci 40:3263–3269CrossRefGoogle Scholar
  56. Tucci PL (2014) The Oxford handbook of Greek and Roman art and architecture. The Materials and Techniques of Greek and Roman Architecture. Clemente Marconi edGoogle Scholar
  57. Varas MJ, Álvarez de Buergo M, Fort R (2005) Natural cement as the precursor of Portland cement: methodology for its identification. Cem Concr Res 35:2055–2065CrossRefGoogle Scholar
  58. Velosa AL, Coroao J, Veiga MR, Rocha F (2007) Characterisation of Roman mortars from Conímbriga with respect to their repair. Mat Charac 58:1208–1216CrossRefGoogle Scholar
  59. Winkler EM (1997) Stone in architecture: properties, durability, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  60. Zamba IC, Stamatakis MG, Cooper FA, Themelis PG, Zambas CG (2007) Characterization of mortars used for the construction of Saithidai Heroon podium (first century AD) in ancient Messene, Peloponnesus, Greece. Mat Charac 58:1229–1239CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • María Isabel Mota-López
    • 1
    Email author
  • Rafael Fort
    • 2
  • Mónica Álvarez de Buergo
    • 2
  • Antonio Pizzo
    • 3
  • Rubén Maderuelo-Sanz
    • 1
  • Juan Miguel Meneses-Rodríguez
    • 1
  • Duygu Ergenç
    • 2
  1. 1.Instituto Tecnológico de Rocas Ornamentales y Materiales de Construcción, INTROMACCampus Universidad de ExtremaduraCáceresSpain
  2. 2.Instituto de Geociencias (CSIC, UCM)MadridSpain
  3. 3.Instituto de Arqueología de Mérida (IAM-CSIC)MéridaSpain

Personalised recommendations