Archaeological and Anthropological Sciences

, Volume 9, Issue 1, pp 83–97 | Cite as

Leporid management and specialized food production at Teotihuacan: stable isotope data from cottontail and jackrabbit bone collagen

  • Andrew D. Somerville
  • Nawa Sugiyama
  • Linda R. Manzanilla
  • Margaret J. Schoeninger
Original Paper


Archaeological research at the UNESCO World Heritage site of Teotihuacan (ad 1–ad 550) in the Basin of Mexico provides evidence for leporid (cottontails and jackrabbits) breeding and/or management within a residential complex of the city, Oztoyahualco. The present study tests this notion by analyzing Teotihuacan leporid bone collagen samples (n = 134) for stable isotope ratios of carbon (δ13Ccollagen) and nitrogen (δ15Ncollagen) to provide information on ancient leporid diet and ecology. Results demonstrate that carbon-stable isotope values from Oztoyahualco specimens are significantly higher than those from other contexts at Teotihuacan and from a sample of modern specimens from the region. These data are consistent with the notion that leporids from Oztoyahualco consumed diets high in C4 and CAM plants, such as the human-cultivated staples of maize (Zea mays), nopal cactus (Opuntia sp.), and maguey (Agave sp.). Nitrogen-stable isotope results show no significant differences between Oztoyahualco and other contexts, suggesting that Oztoyahualco leporids inhabited similar environments, ate food grown on similar soils, and were feeding at the same trophic level. When considered in combination with archaeological data and previously published isotopic results, δ13Ccollagen data from Oztoyahualco support the idea that leporids were artificially provisioned by humans, consistent with the hypothesis that they were bred and/or managed through human labor. More broadly, these results hint that food production at Teotihuacan was at least in part conducted by specialized workers in a manner similar to that of commercialized market economy of the later Aztec Empire (ad 1428–1521).


Teotihuacan Stable isotopes Zooarchaeology Human ecology Food systems 



We thank Doctor María de los Ángeles Olay Barrientos, the Consejo Nacional de México, and the Instituto Nacional de Antropología e Historia for supporting the study. Sample selection was approved and facilitated by Dr. Raúl Valadez Azúa and Dr. Bernardo Rodríguez Galicia, coordinators of the Laboaratorio de Paleozoología Instituto de Investigaciones Antropológicas, de la Universidad Nacional Autónoma de México. Funding was provided by a National Science Foundation Doctoral Dissertation Research Improvement Grant (NSF# 1262186; PIs: MJS and ADS) and a NSF-IGERT Fellowship (ADS; NSF# 0903551). Modern specimens were obtained from the Smithsonian’s National Museum of Natural History. Dr. Bruce Deck assisted with isotopic analysis. We thank the volunteers of the Paleodiet Laboratory, including Janell Bryant, Cheyenne Butcher, Amanda Edwards, Adrienne Koh, Hollie Lappin, Sean Lee, Christi Menger, Tykie Paxton, Kelsie Telson, Sandra Victorini, Jonathan Wong, Jason Kjolsing, Mikael Fauvelle, Sarah Baitzel, Matthew Sitek, and Misha Miller Sisson for their assistance in sample preparation. Additionally, we thank Melanie Beasley for laboratory support and comments.

Supplementary material

12520_2016_420_MOESM1_ESM.xlsx (14 kb)
Online Resource 1 Table presenting contextual information and isotopic data for modern leporid specimens. (XLSX 13 kb)
12520_2016_420_MOESM2_ESM.xlsx (31 kb)
Online Resource 2 Table presenting contextual information and isotopic data for archeological leporid specimens. (XLSX 31 kb)


  1. Ambrose SH (1990) Preparation and characterization of bone and tooth collagen for isotopic analysis. J Archaeol Sci 17:431–451CrossRefGoogle Scholar
  2. Ambrose SH (1991) Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. J Archaeol Sci 18:293–317CrossRefGoogle Scholar
  3. Ambrose SH, Norr L (1993) Isotopic composition of dietary protein and energy versus bone collagen and apatite: purified diet growth experiments. In: Lambert J, Grupe G (eds) Molecular archaeology of prehistoric human bone. Springer, Berlin, pp. 1–37CrossRefGoogle Scholar
  4. Amundson R et al (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:1031. doi: 10.1029/2002gb001903 CrossRefGoogle Scholar
  5. Beramendi LEO, Gonzalez G, Soler AMA (2012) Cronología para Teopancazco: Integración de datos arqueomagnéticos y un modelo bayesiano de radiocarbon. In: Manzanilla LR (ed) Estudios arqueométricos del centro de barrio del Teopancazco en Teotihuacan. Instituto de Investigaciones Antropológicas, UNAM, Mexico, D.F.Google Scholar
  6. Berdan F (1996) Aztec imperial strategies vol 15. Dumbarton Oaks, Washington, D.C.Google Scholar
  7. Biskowski M (2000) Maize preparation and the Aztec subsistence economy. Anc Mesoam 11:293–306CrossRefGoogle Scholar
  8. Blackman MJ, Stein GJ, Vandiver PB (1993) The standardization hypothesis and ceramic mass production: technological, compositional, and metric indexes of craft specialization at tell Leilan. Syria American Antiquity 58:60–80. doi: 10.2307/281454 CrossRefGoogle Scholar
  9. Brumfiel EM (1980) Specialization, market exchange, and the Aztec state: a view from Huexotla. Curr Anthropol 21:459–478CrossRefGoogle Scholar
  10. Buchardt B, Bunch V, Helin P (2007) Fingernails and diet: stable isotope signatures of a marine hunting community from modern Uummannaq, North Greenland. Chem Geol 244:316–329CrossRefGoogle Scholar
  11. Clinton JM, Peres TM (2011) Pests in the garden: testing the garden-hunting model at the Rutherford-Kizer site, Sumner County, Tennessee. Tennessee Archaeology 5:131–141Google Scholar
  12. Conrad C, Jones EL, Newsome SD, Schwartz DW (in press) Bone isotopes, eggshell and turkey husbandry at Arroyo Hondo Pueblo Journal of Archaeological Science: ReportsGoogle Scholar
  13. Cortés H (1977) His five letters of relation to the emperor Charles V, 1519–1526: second letter. Rio Grande Press, Glorietta, NMGoogle Scholar
  14. Costin CL (1991) Craft specialization: issues in defining, documenting and explaining the organization of production. Archaeol Method Theory 3:1–56Google Scholar
  15. Costin CL, Hagstrum MB (1995) Standardization, labor investment, skill, and the organization of ceramic production in late prehispanic highland Peru. Am Antiq 60:619–639. doi: 10.2307/282046 CrossRefGoogle Scholar
  16. Cowgill GL (2008) An update on Teotihuacan. Antiquity 82:962–975CrossRefGoogle Scholar
  17. Cowgill GL (2015) Ancient Teotihuacan. Cambridge University PressGoogle Scholar
  18. de Montellano BRO (1978) Aztec cannibalism: an ecological necessity? Science 200:611–617. doi: 10.1126/science.200.4342.611 CrossRefGoogle Scholar
  19. DeNiro MJ (1985) Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317:806–809CrossRefGoogle Scholar
  20. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506CrossRefGoogle Scholar
  21. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351CrossRefGoogle Scholar
  22. Di Peso C (1974) Casas Grandes: a fallen trading Center of the Gran Chichimeca, volume 2: Medio period. Amerind Foundation and Northland Press, Dragoon, AZGoogle Scholar
  23. Díaz B (1963) The conquest of new Spain. Penguin Books, New York, NYGoogle Scholar
  24. Dice LR (1929) An attempt to breed cottontail rabbits in captivity. J Mammal 10:225–229. doi: 10.2307/1373931 CrossRefGoogle Scholar
  25. Eerkens JW, Bettinger RL (2001) Techniques for assessing standardization in artifact assemblages: can we scale material variability? Am Antiq 66:493–504. doi: 10.2307/2694247 CrossRefGoogle Scholar
  26. Ehleringer JR (1978) Implications of quantum yield differences on the distributions of C3 and C4 grasses. Oecologia 31:255–267. doi: 10.1007/bf00346246 CrossRefGoogle Scholar
  27. Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:121–126CrossRefGoogle Scholar
  28. Flad RK, Hruby ZX (2007) “Specialized” production in archaeological contexts: rethinking specialization, the social value of products, and the practice of production. Archeol Pap Am Anthropol Assoc 17:1–19. doi: 10.1525/ap3a.2007.17.1.1 CrossRefGoogle Scholar
  29. Francey RJ et al (1999) A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B 51. doi: 10.3402/tellusb.v51i2.16269
  30. Froehle AW, Kellner CM, Schoeninger MJ (2010) FOCUS: effect of diet and protein source on carbon stable isotope ratios in collagen: follow up to Warinner and Tuross (2009). J Archaeol Sci 37:2662–2670CrossRefGoogle Scholar
  31. Gerry JP (1997) Bone isotope ratios and their bearing on elite privilege among the classic Maya. Geoarchaeology 12:41–69CrossRefGoogle Scholar
  32. Grimstead D, Reynolds A, Hudson A, Akins N, Betancourt J (2014) Reduced population variance in strontium isotope ratios informs domesticated turkey use at Chaco Canyon, New Mexico, USA. J Archaeol Method Th 23:1–23Google Scholar
  33. Hare EP, Fogel ML, Stafford TW Jr, Mitchell AD, Hoering TC (1991) The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins. J Archaeol Sci 18:277–292CrossRefGoogle Scholar
  34. Harner M (1977) The ecological basis for Aztec sacrifice. Am Ethnol 4:117–135. doi: 10.1525/ae.1977.4.1.02a00070 CrossRefGoogle Scholar
  35. Harris M (1977) Cannibals and kings: the origins of cultures. Vintage Books, New YorkGoogle Scholar
  36. Hartman G (2011) Are elevated δ15N values in herbivores in hot and arid environments caused by diet or animal physiology? Funct Ecol 25:122–131. doi: 10.1111/j.1365-2435.2010.01782.x CrossRefGoogle Scholar
  37. Hedges REM, Reynard LM (2007) Nitrogen isotopes and the trophic level of humans in archaeology. J Archaeol Sci 34:1240–1251CrossRefGoogle Scholar
  38. Hernández C (1993) La lítica. In: Manzanilla L (ed) Anatomía de un conjunto residencial Teotihuacano en Oztoyahualco I: Las excavaciones. Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones Antropologicas, Mexico DF, pp. 388–467Google Scholar
  39. Howell N (1999) The demography of the Dobe !Kung. Academic Press, New YorkGoogle Scholar
  40. Howland MR et al (2003) Expression of the dietary isotope signal in the compound-specific δ13C values of pig bone lipids and amino acids. Int J Osteoarchaeol 13:54–65CrossRefGoogle Scholar
  41. Jim S, Ambrose SH, Evershed RP (2004) Stable carbon isotopic evidence for differences in the dietary origin of bone cholesterol, collagen, and apatite: implications for their use in paleodietray reconstruction. Geochim Cosmochim Acta 68:61–72CrossRefGoogle Scholar
  42. Jones EL (2006) Prey choice, mass collecting, and the wild European rabbit (Oryctolagus cuniculus). J Anthropol Archaeol 25:275–289CrossRefGoogle Scholar
  43. Keeling CD (1979) The Suess effect: 13Carbon-14Carbon interrelations. Environ Int 2:229–300CrossRefGoogle Scholar
  44. Kellner CM, Schoeninger MJ (2007) A simple carbon isotope model for reconstructing prehistoric human diet. Am J Phys Anthropol 133:1112–1127CrossRefGoogle Scholar
  45. Kohn MJ (2010) Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc Natl Acad Sci 107:19691–19695. doi: 10.1073/pnas.1004933107 CrossRefGoogle Scholar
  46. Krueger HW, Sullivan CH (1984) Models for carbon isotope fractionation between diet and bone. In: stable isotopes in nutrition, vol 258. ACS symposium series. Am Chem Soc 258:205–220. doi: 10.1021/bk-1984-0258.ch014 Google Scholar
  47. LeCount LJ (2010) Maya palace kitchens: suprahousehold food preparation at the Late and Terminal Classic site of Xunantunich, Belize. In: Inside Ancient Kitchens. New Directions in the Study of Daily Meals and Feasts. University Press of Colorado, pp 133–160Google Scholar
  48. Lee-Thorp JA, Sealy JC, van der Merwe NJ (1989) Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J Archaeol Sci 16:585–599CrossRefGoogle Scholar
  49. Linares OF (1976) “garden hunting” in the American tropics. Hum Ecol 4:331–349. doi: 10.1007/bf01557917 CrossRefGoogle Scholar
  50. Longacre WA, Kvamme KL, Kobayashi M (1988) Southwestern pottery standardization: an ethnoarchaeological view from the Philippines. Kiva 53:101–112CrossRefGoogle Scholar
  51. Manzanilla L (1993) Anatomía de un conjunto residencial Teotihuacano en Oztoyahualco I: Las excavaciones. Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones Antropologicas, Mexico DFGoogle Scholar
  52. Manzanilla L (1994) Geografía sagrada e inframundo en Teotihuacan. In: Antropológicas, vol 11. UNAM, Instituto de Investigaciones Antropológicas, UNAM México, pp 53–56Google Scholar
  53. Manzanilla L (1996) Corporate groups and domestic activities at Teotihuacan. Lat Am Antiq 7:228–246. doi: 10.2307/971576 CrossRefGoogle Scholar
  54. Manzanilla L, López C, Freter A (1996) Dating results from excavations in quarry tunnels behind the pyramid of the sun at Teotihuacan. Anc Mesoam 7:245–266. doi: 10.1017/S0956536100001450 CrossRefGoogle Scholar
  55. Manzanilla LR (2007) Las "casas" nobles de los barrios de Teotihuacan: Estructuras exclusionistas en un entorno corporativo El Colegio Nacional La. Memoria 2007:485–502Google Scholar
  56. Manzanilla LR (2012) Estudios arqueométricos del centro de barrio de Teopancazco en Teotihuacan. Universidad Nacional Autónoma de México, Coordinación de la Investigación Científica-Coordinación de Humanidades, MéxicoGoogle Scholar
  57. Manzanilla LR, Barba L, Chavez R, Tejero A, Cifuentes G, Peralta N (1994) Caves and geophysics: an approximation to the underworld of Teotihuacan. Mexico Archaeometry 36:141–157. doi: 10.1111/j.1475-4754.1994.tb01070.x CrossRefGoogle Scholar
  58. McCaffery H, Tykot R, Gore KD, DeBoer B (2014) Stable isotope analysis of Turkey (Meleagris gallopavo) diet from Pueblo II and Pueblo III sites, middle San Juan region, Northwest New Mexico. Am Antiq 79:337–352. doi: 10.7183/0002-7316.79.2.337 CrossRefGoogle Scholar
  59. McClung de Tapia E, Martínez Yrízar D, Ibarra Morales E, Adriano Morán CC (2014) Los orígenes prehispánicos de una tradición alimentaria en la cuenca de méxico. Anales de Antropología 48:97–121CrossRefGoogle Scholar
  60. Millon R (1973) The Teotihuacan map: part I: text. University of Texas Press, AustinGoogle Scholar
  61. Millon R, Bennyhoff JA (1961) A long architectural sequence at Teotihuacan. Am Antiq 26:516–523. doi: 10.2307/278739 CrossRefGoogle Scholar
  62. Minagawa M, Wada E (1984) Stepwise enrichment of 15 N along food chains: further evidence and the relation between 15 N and animal age. Geochim Cosmochim Acta 48:1135–1140CrossRefGoogle Scholar
  63. Moragas Segura N (1994) Salvamento arqueologico en la Puerta 5: Cueva II-Cueva III-Cala II. Marzo 1993-Octubre 1993. In: Informe tecnico, Proyecto Especial 1992–1994. Instituto Nacional de Antropologia e Historia, MexicoGoogle Scholar
  64. Moragas Segura N (2002) Cuevas ceremoniales en Teotihuacan durante el periodo postclasico Boletín americanista:165–176Google Scholar
  65. Nations JD, Nigh RB (1980) The evolutionary potential of Lacandon Maya sustained-yield tropical forest agriculture Journal of Anthropological Research:1–30Google Scholar
  66. Neusius S (2008) Game procurement among temperate horticulturists the case for garden hunting by the Dolores Anasazi. In: Reitz E, Scudder S, Scarry CM (eds) Case studies in environmental archaeology. Interdisciplinary contributions to archaeology. Springer, New York, pp. 297–314. doi: 10.1007/978-0-387-71303-8_15 CrossRefGoogle Scholar
  67. O’Connell TC, Kneale CJ, Tasevska N, Kuhnle GGC (2012) The diet-body offset in human nitrogen isotopic values: a controlled dietary study. Am J Phys Anthropol 149:426–434. doi: 10.1002/ajpa.22140 CrossRefGoogle Scholar
  68. O’Leary MH (1988) Carbon isotopes in photosynthesis. Bioscience 38:328–336CrossRefGoogle Scholar
  69. Ortiz Butrón A, Barba L (1993) La química en el estudio de áres de actividad. In: Manzanilla L (ed) Anatomía de un conjunto residencial Teotihuacano en Oztoyahualco II: Los estudios específicos. Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones Antropologicas, Mexico DF, pp. 617–660Google Scholar
  70. Parsons J (2010) The pastoral niche in pre-Hispanic Mesoamerica. In: Staller J, Carrasco M (eds) Pre-Columbian foodways. Springer, New York, pp. 109–136. doi: 10.1007/978-1-4419-0471-3_4 CrossRefGoogle Scholar
  71. Parsons JR (2008) Beyond Santley and rose (1979): the role of aquatic resources in the prehispanic economy of the basin of Mexico. J Anthropol Res 64:351–366. doi: 10.2307/20371260 CrossRefGoogle Scholar
  72. Rawlings TA, Driver JC (2010) Paleodiet of domestic Turkey, shields Pueblo (5MT3807), Colorado: isotopic analysis and its implications for care of a household domesticate. J Archaeol Sci 37:2433–2441CrossRefGoogle Scholar
  73. Rice PM (1991) Specialization, standardization and diversity: a retrospective. In: Bishop RL, Lange FW (eds) The ceramic legacy of Anna O. Shepard. University of Colorado Press, NiwotGoogle Scholar
  74. Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162CrossRefGoogle Scholar
  75. Rubino M et al (2013) A revised 1000 year atmospheric δ13C-CO2 record from law dome and south pole Antarctica. J Geophys Res Atmos 118:8482–8499. doi: 10.1002/jgrd.50668 CrossRefGoogle Scholar
  76. Sanders WT, Parsons JR, Logan MH (1976) Summary and conclusions. In: Wolf ER (ed) The valley of Mexico: studies in pre-Hispanic ecology and society. University of New Mexico Press, AlbuquerqueGoogle Scholar
  77. Schmitt J et al (2012) Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336:711–714. doi: 10.1126/science.1217161 CrossRefGoogle Scholar
  78. Schoeninger MJ, DeNiro MJ (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Acta 48:625–639CrossRefGoogle Scholar
  79. Schollmeyer K, Driver J (2013) Settlement patterns, source–sink dynamics, and artiodactyl hunting in the prehistoric U.S. Southwest J Archaeol Method Theory 20:448–478. doi: 10.1007/s10816-012-9160-5 CrossRefGoogle Scholar
  80. Schwarcz HP (2000) Some biochemical aspects of carbon isotopic paleodiet studies. In: Ambrose S, Katzenberg M (eds) Biogeochemical approaches to paleodietary analysis, vol 5. Advances in archaeological and museum science. Springer, US, pp. 189–209. doi: 10.1007/0-306-47194-910 Google Scholar
  81. Sealy J, Johnson M, Richards M, Nehlich O (2014) Comparison of two methods of extracting bone collagen for stable carbon and nitrogen isotope analysis: comparing whole bone demineralization with gelatinization and ultrafiltration. J Archaeol Sci 47:64–69CrossRefGoogle Scholar
  82. Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47:380–384CrossRefGoogle Scholar
  83. Smith ME (1979) The Aztec marketing system and settlement pattern in the valley of Mexico: a central place analysis. Am Antiq 44:110–125. doi: 10.2307/279193 CrossRefGoogle Scholar
  84. Somerville AD, Nelson BA, Knudson KJ (2010) Isotopic investigation of pre-Hispanic macaw breeding in Northwest Mexico. J Anthropol Archaeol 29:125–135CrossRefGoogle Scholar
  85. Somerville AD, Sugiyama N, Manzanilla LR, Schoeninger MJ (2016) Animal management at the ancient metropolis of Teotihuacan, Mexico: stable isotope analysis of leporid (cottontail and jackrabbit) bone mineral. PLoS One 11:e0159982. doi: 10.1371/journal.pone.0159982 CrossRefGoogle Scholar
  86. Stahl PW (2014) Garden hunting. In: Smith C (ed) Encyclopedia of global archaeology. Springer, New York, pp. 2945–2952. doi: 10.1007/978-1-4419-0465-2_2132 CrossRefGoogle Scholar
  87. Starbuck, DR (1975) Man-animal relationships in pre-Columbian Central Mexico. Ph.D. Thesis, Yale UniversityGoogle Scholar
  88. Stowe LG, Teeri JA (1978) The geographic distribution of C4 species of the Dicotyledonae in relation to climate. Am Nat 112:609–623. doi: 10.2307/2460127 CrossRefGoogle Scholar
  89. Sugiyama N (2014) Animals and sacred mountains: how ritualized performances materialized state-ideologies at Teotihuacan, Mexico. Ph. Dissertation, Harvard UniversityGoogle Scholar
  90. Sugiyama N, Somerville AD, Schoeninger MJ (2015) Stable isotopes and zooarchaeology at Teotihuacan, Mexico reveal earliest evidence of wild carnivore management in Mesoamerica. PLoS One 10:e0135635. doi: 10.1371/journal.pone.0135635 CrossRefGoogle Scholar
  91. Sugiyama N, Valadez Azúa R, Rodríguez B (2014) Faunal acquisition, maintenance and consumption: how the teotihuacanos got their meat. Paper presented at the 79th Annual Society for American Archaeology Meeting, Austin, Texas, April 23–27, 2014Google Scholar
  92. Sugiyama N, Valadez R, PéRez G, RodríGuez B, Torres F (2013) Animal management, preparation and sacrifice: reconstructing burial 6 at the moon pyramid. Teotihuacan, México Anthropozoologica 48:467–485. doi: 10.5252/az2013n2a18 CrossRefGoogle Scholar
  93. Sugiyama S, Cabrera RC (2007) The moon pyramid project and the Teotihuacan state polity. Anc Mesoam 18:109–125. doi: 10.1017/S0956536107000053 CrossRefGoogle Scholar
  94. Szpak P, Millaire J-F, White CD, Longstaffe FJ (2012) Influence of seabird guano and camelid dung fertilization on the nitrogen isotopic composition of field-grown maize (Zea mays). J Archaeol Sci 39:3721–3740CrossRefGoogle Scholar
  95. Szuter CR (1991) Hunting by Hohokam desert farmers. Kiva 56:277–291. doi: 10.2307/30247277 CrossRefGoogle Scholar
  96. Thornton E, Emery KF, Speller C (in press) Ancient Maya turkey husbandry: Testing theories through stable isotope analysis Journal of Archaeological Science: ReportsGoogle Scholar
  97. Tieszen LL, Fagre T (1993a) Effect of diet quality and composition of respiratory CO2, bone, collagen, bioapatite, and soft tissues. In: Lambert J, Grupe G (eds) Molecular archaeology of prehistoric human bone. Springer, Berlin, pp. 121–156CrossRefGoogle Scholar
  98. Tieszen LL, Fagre T (1993b) Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite, and soft tissues. In: Lambert J, Grupe G (eds) Molecular archaeology of prehistoric human bone. Springer, Berlin, pp. 121–155CrossRefGoogle Scholar
  99. Tieszen LL, Senyimba MM, Imbamba SK, Troughton JH (1979) The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia 37:337–350. doi: 10.1007/bf00347910 CrossRefGoogle Scholar
  100. Tykot RH, Van der Merwe NJ, Hammond N (1996) Stable isotope analysis of bone collagen, bone apatite, and tooth enamel in the reconstruction of human diet: a case study from Cuello, Belize. In: Orna MV (ed) Archaeological chemistry V. American Chemical Society. Washington, DC, pp. 355–365CrossRefGoogle Scholar
  101. Ugan A, Coltrain J (2011) Variation in collagen stable nitrogen values in black-tailed jackrabbits (Lepus californicus) in relation to small-scale differences in climate, soil, and topography. J Archaeol Sci 38:1417–1429CrossRefGoogle Scholar
  102. Valadez R (1993) Macrofósiles faunísticos. In: Manzanilla L (ed) Anatomía de un conjunto residencial Teotihuacano en Oztoyahualco II: Los estudios específicos. Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones Antropologicas, Mexico DF, pp. 729–831Google Scholar
  103. Van der Merwe NJ, Tykot RH, Hammond N, Oakberg K (2000) Diet and animal husbandry of the Preclassic Maya at Cuello, Belize: isotopic and zooarchaeological evidence. In: Ambrose SH, Katzenberg MA (eds) Biogeochemical approaches to paleodietary analysis. Kluwer Academic Publishers, New York, pp. 23–38Google Scholar
  104. VanPool TL, Leonard RD (2002) Specialized ground stone production in the Casas Grandes Region of northern Chihuahua. Mexico Am Antiq 67:710–730. doi: 10.2307/1593800 CrossRefGoogle Scholar
  105. Virginia RA, Delwiche CC (1982) Natural 15N abundance of presumed N2-fixing and non-N2-fixing plants from selected ecosystems. Oecologia 54:317–325CrossRefGoogle Scholar
  106. Warinner C, Garcia NR, Tuross N (2013) Maize, beans and the floral isotopic diversity of highland Oaxaca Mexico. J Archaeol Sci 40:868–873CrossRefGoogle Scholar
  107. Warinner C, Tuross N (2009) Alkaline cooking and stable isotope tissue-diet spacing in swine: archaeological implications. J Archaeol Sci 36:1690–1697CrossRefGoogle Scholar
  108. White CD, Pohl MED, Schwarcz HP, Longstaffe FJ (2001) Isotopic evidence for Maya patterns of deer and dog use at Preclassic Colha. J Archaeol Sci 28:89–107CrossRefGoogle Scholar
  109. Williamson T (2006) The archaeology of rabbit warrens. Shire Publications, Ltd., Buckinghamshire, UKGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Andrew D. Somerville
    • 1
    • 2
  • Nawa Sugiyama
    • 3
    • 4
  • Linda R. Manzanilla
    • 5
  • Margaret J. Schoeninger
    • 1
  1. 1.Department of AnthropologyUniversity of CaliforniaLa JollaUSA
  2. 2.Department of AnthropologyCalifornia State University, Dominguez HillsCarsonUSA
  3. 3.Department of Sociology and AnthropologyGeorge Mason UniversityFairfaxUSA
  4. 4.Department of AnthropologyNational Museum of Natural History, MRC 112, Smithsonian InstitutionWashingtonUSA
  5. 5.Instituto de Investigaciones Antropológicas, Universidad Nacional Autónoma de México, Ciudad UniversitariaMexico CityMexico

Personalised recommendations