Advertisement

Archaeological and Anthropological Sciences

, Volume 10, Issue 2, pp 449–464 | Cite as

When wildcats feed on rabbits: an experimental study to understand the taphonomic signature of European wildcats (Felis silvestris silvestris)

  • Lluís LloverasEmail author
  • Richard Thomas
  • Alessandra Cosso
  • César Pinyol
  • Jordi Nadal
Original Paper

Abstract

Studies of the feeding ecology of the European wildcat (Felis silvestris silvestris) demonstrate that leporids, mostly European rabbit (Oryctolagus cuniculus), dominate their diet in regions where they are present. The remains of wildcats have been found at Pleistocene and Holocene archaeological sites, raising the possibility that they actively accumulated leporid bones in caves and shelters shared with other terrestrial carnivores, raptors and humans. We present the first taphonomic study of rabbit remains consumed by this terrestrial carnivore, with the ultimate aim of understanding their role in bone accumulations at archaeological sites. An experimental study was carried out with a wildcat female, who was fed with nine complete rabbit carcasses. Non-ingested remains and scats were recovered for the analysis of anatomical representation, breakage and bone surface modification. This revealed that non-ingested remains and scats of the European wildcat can be discriminated from most other agents of accumulation. The referential framework provided will permit the discrimination of hominids and wildcats as agents of fossil accumulations of rabbits.

Keywords

Taphonomy Wildcat European rabbit Small prey Bone accumulators 

Notes

Acknowledgments

Ll. Lloveras was funded by postdoctoral fellowships BP-A 00334 2011 and BPB-00140-2014 from the Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya and COFUND programme (Marie Curie Actions). Financial support from research projects HAR2014-55131 from the Ministerio de Ciencia e Innovación (MICINN) and SGR2014-108 from the Generalitat de Catalunya are gratefully acknowledged.

Supplementary material

12520_2016_364_MOESM1_ESM.jpg (1.3 mb)
Figure S1 Picture of the European wildcat involved in the experimental study. Examples of scats and non-ingested materials recovered. (JPEG 1295 kb)

References

  1. Alvarez MC, Kaufmann CA, Massigoge A, Gutiérrez MA, Rafuse DJ, Scheifler NA, González ME (2012) Bone modification and destruction patterns of leporid carcasses by Geoffroy’s cat (Leopardus geoffroyi): an experimental study. Quat Int 278:71–80CrossRefGoogle Scholar
  2. Amstrong A (2016) Eagles, owls, and coyotes (oh my!): taphonomic analysis of rabbits and guinea pigs fed to captive raptors and coyotes. J Archaeol Sci Rep 5:135–155Google Scholar
  3. Andrews P (1990) Owls, caves and fossils. Natural History Museum, LondonGoogle Scholar
  4. Aura JE, Villaverde V, Pérez Ripoll M, Martínez Valle R, Calatayud PG (2002) Big game and small prey: Paleolithic and Epipaleolithic economy from Valencia (Spain). J Archaeoll Method Theory 9:215–267CrossRefGoogle Scholar
  5. Binford LR (1981) Bones: ancient men and modern myths. Ac. Press, New YorkGoogle Scholar
  6. Brain CK (1981) The hunters or the hunted? An introduction to African cave taphonomy. University of Chicago Press, ChicagoGoogle Scholar
  7. Cochard D (2004) Étude taphonomique des léporidés d’une tanière de renard actuelle: apport d’un référentiel à la reconnaisance des accumulations anthropiques. Rev Paléobiol 23:659–673Google Scholar
  8. Condé B, Nguyen-Thi-Thu-Cuc VF, Schauenberg P (1972) Le régime alimentaire du chat forestier (Felis silvestris , Schreber) en France. Mammalia 36:112–119CrossRefGoogle Scholar
  9. Dodson P, Wexlar D (1979) Taphonomic investigations of owl pellets. Paleobiology 5:275–284CrossRefGoogle Scholar
  10. Enloe JG (2012) Middle Palaeolithic cave taphonomy: discerning humans from hyenas at Arcy-sur-cure, France. Int J Osteoarchaeol 22:591–602CrossRefGoogle Scholar
  11. Fernández-Jalvo Y, Andrews P (1992) Small mammal taphonomy of Gran Dolina, Atapuerca (Burgos), Spain. J Archaeol Sci 19:407–428CrossRefGoogle Scholar
  12. Gidna A, Yravedra J, Domínguez-Rodrigo M (2013) A cautionary note on the use of captive carnivores to model wild predator behavior: a comparison of bone modification patterns on long bones by captive and wild lions. J Archaeol Sci 40:1903–1910CrossRefGoogle Scholar
  13. Gil-Sánchez JM, Valenzuela G, Sánchez JF (1999) Iberian wild cat Felis silvestris tartessia predation on rabbit Oryctolagus cuniculus: functional response and age selection. Acta Theriol 44:421–428CrossRefGoogle Scholar
  14. Gómez G, Kaufmann C (2007) Taphonomic analysis of Pseudalopex griseus (Gray, 1837) scat assemblages and their archaeological implications. J Taphonomy 5:59–70Google Scholar
  15. Grayson DK (1984) Quantitative zooarchaeology. Academic Press, New YorkGoogle Scholar
  16. Haynes G (1980) Evidence of carnivore gnawing on Pleistocene and recent mammalian bones. Paleobiology 6:341–351CrossRefGoogle Scholar
  17. Hockett BS, Haws JA (2002) Taphonomic and methodological perspectives of leporid hunting during the upper Paleolithic of the western Mediterranean basin. J Archaeol Method Theory 9:269–302CrossRefGoogle Scholar
  18. Krajcarz M, Krajcarz MT (2014) The red fox (Vulpes vulpes) as an accumulator of bones in cave-like environments. Int J Osteoarchaeol 24:459–475CrossRefGoogle Scholar
  19. Lloveras L, Moreno-García M, Nadal J (2008a) Taphonomic analysis of leporid remains obtained from modern Iberian lynx (Lynx pardinus) scats. J Archaeol Sci 35:1–13CrossRefGoogle Scholar
  20. Lloveras L, Moreno-García M, Nadal J (2008b) Taphonomic study of leporid remains accumulated by Spanish imperial eagle (Aquila adalberti). Geobios 41:91–100CrossRefGoogle Scholar
  21. Lloveras L, Moreno-García M, Nadal J (2009) The eagle owl (Bubo bubo) as a leporid remains accumulator. Taphonomic analysis of modern rabbit remains recovered from nests of this predator. Int J Osteoarchaeol 19:573–592CrossRefGoogle Scholar
  22. Lloveras L, Moreno-García M, Nadal J (2012a) Feeding the foxes: an experimental study to assess their taphonomic signature on leporid remains. Int J Osteoarchaeol 22:577–590CrossRefGoogle Scholar
  23. Lloveras L, Moreno-García M, Nadal J (2012b) Assessing the variability in taphonomic studies of modern leporid remains from eagle owl (Bubo bubo) nest assemblages: the importance of age of prey. J Archaeol Sci 39:3754–3764CrossRefGoogle Scholar
  24. Lloveras L, Nadal J, Moreno-García M, Thomas R, Anglada J, Baucells J, Martorell C, Vilasís D (2014a) The role of the Egyptian vulture (Neophron percnopterus) as a bone accumulator in cliff rock shelters: an analysis of modern bone nest assemblages from North-Eastern Iberia. J Archaeol Sci 44:76–90CrossRefGoogle Scholar
  25. Lloveras L, Thomas R, Lourenço R, Caro J, Dias A (2014b) Understanding the taphonomic signature of Bonelli’s eagle (Aquila fasciata) on prey remains obtained from modern nests and pellets. J Archaeol Sci 49:455–471CrossRefGoogle Scholar
  26. Lloveras L, Moreno-García M, Nadal J, Thomas R (2014c) Blind test evaluation of accuracy in the identification and quantification of digestion corrosion damage on leporid bones. Quat Int 330:150–155CrossRefGoogle Scholar
  27. Lozano J (2008) Ecología del gato montés (Felis silvestris) y su relación con el conejo de monte (Oryctolagus cuniculus). PhD Thesis, Universidad Complutense de MadridGoogle Scholar
  28. Lozano J, Moleón M, Virgós E (2006) Biogeographical patterns in the diet of the wildcat, Felis silvestris Schreber, in Eurasia: factors affecting the trophic diversity. J Biogeogr 33:1076–1085CrossRefGoogle Scholar
  29. Malo AF, Lozano J, Huertas DL, Virgós E (2004) A change of diet from rodents to rabbits (Oryctolagus cuniculus). Is the wildcat (Felis silvestris) a specialist predator? J Zool 263:401–407CrossRefGoogle Scholar
  30. Mallye JB, Cochard D, Laroulandie V (2008) Accumulations osseuses en péripherérie de terriers de petits carnivores: les stigmates de prédation et de fréquentation. Ann Paléontol 94:187–208CrossRefGoogle Scholar
  31. Mondini M (2002) Carnivore taphonomy and the early human occupations in the Andes. J Archaeol Sci 29:791–801CrossRefGoogle Scholar
  32. Pavao B, Stahl PW (1999) Structural density assays of leporid skeletal elements with implications for taphonomic, actualistic and archaeological research. J Archaeol Sci 26:53–66CrossRefGoogle Scholar
  33. Rodríguez-Hidalgo A, Lloveras L, Moreno-García M, Saladié P, Canals A, Nadal J (2013) Feeding behaviour and taphonomic characterization of non-ingested rabbit remains produced by Iberian liynx (Lynx pardinus). J Archaeol Sci 40:3031–3045CrossRefGoogle Scholar
  34. Rodríguez-Hidalgo A, Saladié P, Marín J, Canals A (2015) Expansion of the referential framework for the rabbit fossil accumulations generated by Iberian lynx. Palaeogeogr Palaeoclimatol Palaeoecol 418:1–11CrossRefGoogle Scholar
  35. Sanchis A (2000) Los restos de Oryctolagus cuniculus en las tafocenosis de Bubo bubo y Vulpes vulpes y su aplicación a la caracterización del Registro faunístico arqueológico. Saguntum 32:31–50Google Scholar
  36. Sanchis Serra A, Pascual Benito J (2011) Análisis de las acumulaciones óseas de una guarida de pequeños mamíferos carnívoros (Sitjar Baix, Onda, Castellón): implicaciones arqueológicas. Archaeofauna 20:47–71Google Scholar
  37. Sanchis Serra A, Real Margalef C, Morales Pérez JV, Pérez Ripoll M, Tormo Cuñat C, Carrión Marco Y, Pérez Jordá G, Ribera Gómez A, Bolufer Marqués J, Villaverde Bonilla V (2014) Towards the identification of a new taphonomic agent: an analysis of bone accumulations obtained from modern Egyptian vulture (Neophron percnopterus) nests. Quat Int 330:136–149CrossRefGoogle Scholar
  38. Schmitt DN (1995) The taphonomy of golden eagle prey accumulations at Great Basin roosts. J Ethnobiol 15:237–256Google Scholar
  39. Schmitt DN, Juell KE (1994) Toward the identification of coyote scatological faunal accumulations in archaeological contexts. J Archaeol Sci 21:249–262CrossRefGoogle Scholar
  40. Stahl P, Artois M (1991) Status and conservation of the wild cat (Felis silvestris) in Europe and around the Mediterranean rim. Council of Europe Press, StrasbourgGoogle Scholar
  41. Stiner MC, Munro ND, Sanz M (2012) Carcass damage and digested bone from mountain lions (Felis concolor): implications for carcass persistence on landscapes as a function of prey age. J Archaeol Sci 39:896–907CrossRefGoogle Scholar
  42. Sunquist M, Sunquist F (2002) Wild cats of the world. The University of Chicago Press, ChicagoGoogle Scholar
  43. Villa P, Mahieu E (1991) Breakage patterns of human long bones. J Hum Evol 21:27–48CrossRefGoogle Scholar
  44. Wolsan M (1993) Évolution des carnivores quarternaires en Europe Centrale dans leur contexte stratigraphique et paléoclimatique. l’Anthropologie 7:203–222Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.SERP, Departament de Prehistòria, Història Antiga i Arqueologia, Facultat de Geografia i HistòriaUniversitat de BarcelonaBarcelonaSpain
  2. 2.School of Archaeology and Ancient HistoryUniversity of LeicesterLeicesterUK
  3. 3.Dipartimento di Storia, Scienze dell’Uomo e della FormazioneUniversità degli Studi di SassariSassariItaly
  4. 4.Centre de fauna de Vallcalent, Departament d’Agricultura, Ramaderia, Pesca, Alimentació i Medi NaturalLleidaSpain

Personalised recommendations