Advertisement

Archaeological and Anthropological Sciences

, Volume 9, Issue 6, pp 1187–1213 | Cite as

Palaeoenvironmental analysis of large-scale, high-resolution GPR and magnetometry data sets: the Viking Age site of Gokstad in Norway

  • Petra Schneidhofer
  • Erich Nau
  • Alois Hinterleitner
  • Agata Lugmayr
  • Jan Bill
  • Terje Gansum
  • Knut Paasche
  • Sirri Seren
  • Wolfgang Neubauer
  • Erich Draganits
  • Immo Trinks
Original Paper

Abstract

Large-scale, high-resolution geophysical data sets offer new possibilities for the comprehensive study of archaeological landscapes. In addition to the mere archaeological component, these data sets carry palaeoenvironmental information about the study area. Such information was known but rarely used in conventional geophysical surveys, which is mainly due to methodological issues. The Viking Age site of Gokstad in the Norwegian Province of Vestfold was chosen as a pilot study in order to perform a palaeoenvironmental analysis of large-scale, high-resolution ground-penetrating radar (GPR) and magnetometry data sets. The aim was to investigate how much palaeoenvironmental information is contained in such data sets, how this information can be extracted and analysed and whether it is relevant for the archaeological interpretation. Results yielded a variety of different palaeoenvironmental aspects including characteristics of the Viking Age shoreline, traces of former topography as well as insights into the palaeohydrology of the study area.

Keywords

Geophysical prospection Geoarchaeology Palaeoenvironment Viking Age 

Notes

Acknowledgments

This study has been conducted as part of a PhD research project at the Initiative College for Archaeological Prospection (IC-Archpro) situated at the Vienna Institute for Archaeological Science (VIAS) of the University of Vienna in close collaboration with the Austrian Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology (LBI ArchPro) and its partners Vestfold fylkeskommune (Vfk) and the Norwegian Institute for cultural heritage research (NIKU). It was also carried out in the framework of the Gokstad revitalised project of the Museum of Cultural History Oslo (UiO). The geophysical fieldwork was conducted with the help of Manuel Gabler, Roland Filzwieser, Sebastian Flöry, Viktor Jansa (LBI ArchPro) as well as Lars Gustavsen and Lise-Marie Bye Johansen (NIKU). The authors would like to specifically thank Rebecca Cannell (University of Bournemouth) and Christer Tonning (Vestfold fylkeskommune) for their support during fieldwork, David Thornley (University of Reading) for his assistance with the laser granulometry, Prof. John Allen (University of Reading) and Prof. Martin Bell (University of Reading) for valuable suggestions. The Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology (LBI ArchPro) is a research institute of the Ludwig Boltzmann Gesellschaft (www.lbg.ac.at). The lead partners of the Vienna-based institute are the University of Vienna (A), the Vienna University of Technology (A), the Austrian Central Institute for Meteorology and Geodynamics (A), the Province of Lower Austria (A), Airborne Technologies (A), the Roman-Germanic Central Museum Mainz (RGZM, D), the Swedish History Museums (S), the University of Birmingham (GB), the Norwegian Institute for Cultural Heritage Research (NIKU, N), Vestfold fylkeskommune (N), 7 reasons Medien GmbH (A), the Austrian Archaeological Institute (A) and the Austrian Academy of Sciences (ÖAW).

Supplementary material

12520_2015_312_MOESM1_ESM.docx (19 kb)
Table 1 Sediment descriptions of evaluation cores and observed layers. (DOCX 18 kb)

References

  1. Armstrong K (2010) Archaeological geophysical prospection in peatland environments. Dissertation, University of BournemouthGoogle Scholar
  2. Bascom WN (1953) Characteristics of natural beaches. Proc. 4th Coast. Engineering Conf. ASCE. pp 163–180Google Scholar
  3. Bates MR, Bates CR (2000) Multidisciplinary approaches to the geoarchaeological evaluation of deeply stratified sedimentary sequences: examples from Pleistocene and Holocene deposits in southern England, United Kingdom. J Archaeol Sci 27:845–858. doi: 10.1006/jasc.2000.0584 CrossRefGoogle Scholar
  4. Bates MR, Bates CR, Whittaker JE (2007) Mixed method approaches to the investigation and mapping of buried quaternary deposits: examples from southern England. Archaeol Prospect 14:104–129CrossRefGoogle Scholar
  5. Bayer P, Huggenberger P, Renard P, Comunian A (2011) Three-dimensional high resolution fluvio-glacial aquifer analog: part 1: field study. J Hydrol 405:1–9. doi: 10.1016/j.jhydrol.2011.03.038 CrossRefGoogle Scholar
  6. Benedetti MM, Cordova CE, Beach T (2011) Soils, sediments and geoarchaeology. Catena 85:83–186CrossRefGoogle Scholar
  7. Berendsen HJ, Stouthamer E (2000) Late Weichselian and Holocene palaeogeography of the Rhine–Meuse delta, The Netherlands. Palaeogeogr Palaeoclimatol Palaeoecol 161:311–335. doi: 10.1016/S0031-0182(00)00073-0 CrossRefGoogle Scholar
  8. Bill J, Rødsrud L (2013) En ny markeds-og produksjonsplass ved Gokstad i Vestfold. Nicolay: 5–12Google Scholar
  9. Bird E (2010) Encyclopedia of the world’s coastal landforms. Springer, New YorkCrossRefGoogle Scholar
  10. Bird ECF, Schwartz ML (1985) The world’s coastline. Van Nostrand Reinhold Company, New YorkGoogle Scholar
  11. Bishop MP, James LA, Shroder JF, Walsh SJ (2012) Geospatial technologies and digital geomorphological mapping: concepts, issues and research. Geomorphology 137:5–26. doi: 10.1016/j.geomorph.2011.06.027 CrossRefGoogle Scholar
  12. Bristow CS, Jol HM (2003) Ground penetrating radar in sediments: advice on data collection, basic processing and interpretation, a good practice guide. In: Bristow CS, Jol HM (eds) Ground penetrating radar sediments. Geological Society of London, Bath, pp 9–28Google Scholar
  13. Bristow CS, Pucillo K (2006) Quantifying rates of coastal progradation from sediment volume using GPR and OSL: the Holocene fill of Guichen Bay, south-east South Australia. Sedimentology 53:769–788. doi: 10.1111/j.1365-3091.2006.00792.x CrossRefGoogle Scholar
  14. Brivio PA, Pepe M, Tomasoni R (2000) Multispectral and multiscale remote sensing data for archaeological prospecting in an alpine alluvial plain. J Cult Herit 1:155–164. doi: 10.1016/S1296-2074(00)00155-2 CrossRefGoogle Scholar
  15. Brown AG (1997) Alluvial geoarchaeology: floodplain archaeology and environmental change. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. Burke MJ, Woodward J, Russell AJ, Fleisher PJ, Bailey PK (2008) Controls on the sedimentary architecture of a single event englacial esker: Skeiðarárjökull, Iceland. Quat Sci Rev 27:1829–1847. doi: 10.1016/j.quascirev.2008.06.012 CrossRefGoogle Scholar
  17. Butzer KW (1982) Archaeology as human ecology: method and theory for a contextual approach. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. Cannell RJS. The coastal sediments at Heimdaljordet. Report, OsloGoogle Scholar
  19. Carey C, Brown T (2006) Predictive modelling of multiperiod geoarchaeological resources at a river confluence: a case study from the Trent–Soar, UK. Archaeol Prospect 250:241–250. doi: 10.1002/arp CrossRefGoogle Scholar
  20. Challis K, Howard A (2006) A review of trends within archaeological remote sensing in alluvial environments. Archaeol Prospect 240:231–240. doi: 10.1002/arp CrossRefGoogle Scholar
  21. Chappell J, Shackelton NJ (1986) Oxygen isotopes and sea level. Nature 324:137–140CrossRefGoogle Scholar
  22. Church JA, White NJ, Aarup T, Wilson SW, Woodworth PL, Domingues CM, Hunter JR, Lambeck K (2008) Understanding global sea levels: past, present and future. Sustain Sci 3:9–22CrossRefGoogle Scholar
  23. Clemmensen LB, Nielsen L (2010) Internal architecture of a raised beach ridge system (Anholt, Denmark) resolved by ground-penetrating radar investigations. Sediment Geol 223:281–290. doi: 10.1016/j.sedgeo.2009.11.014 CrossRefGoogle Scholar
  24. Conyers LB, Ernenwein EG, Grealy M, Lowe KM (2008) Electromagnetic conductivity mapping for site prediction in meandering river floodplains. Archaeol Prospect 91:81–91. doi: 10.1002/arp CrossRefGoogle Scholar
  25. Courty M-A, Goldberg P, Macphail R (1990) Soils and micromorphology in archaeology. Cambridge University Press, CambridgeGoogle Scholar
  26. Darwin RL, Reid Ferring C, Ellwood BB (1990) Geoelectric stratigraphy and subsurface evaluation of quaternary stream sediments at the Cooper Basin, NE Texas. Geoarchaeology 5:53–79. doi: 10.1002/gea.3340050106 CrossRefGoogle Scholar
  27. De Clercq W, De Smedt P, De Reu J, Herremans D, Masters P, Saey T, Stichelbaut P, Van Meirvenne M (2012) Towards an integrated methodology for assessing rural settlement landscapes in the Belgian lowlands. Archaeol Prospect 19:141–145. doi: 10.1002/arp.1418 CrossRefGoogle Scholar
  28. De Fátima Rossetti D, Góes AM, Mann de Toledo P (2009) Archaeological mounds in Marajó Island in northern Brazil: a geological perspective integrating remote sensing and sedimentology. Geoarchaeology 24:22–41. doi: 10.1002/gea.20250 CrossRefGoogle Scholar
  29. De Smedt P, Van Meirvenne M, Meerschman E, Saey T, Bats M, Court-Picon M, De Reu J, Zwertvaegher A, Antrop M, Bourgeois J, De Maeyer P, Finke P, Verniers J, Crombé P (2011) Reconstructing palaeochannel morphology with a mobile multicoil electromagnetic induction sensor. Geomorphology 130:136–141. doi: 10.1016/j.geomorph.2011.03.009 CrossRefGoogle Scholar
  30. Denham TP (2008) Environmental archaeology: interpreting practices-in-the-landscape through geoarchaeology. In: David B, Thomas J (eds) Handbook of landscape archaeology. Left Coast Press, Walnut Creek, pp 468–481Google Scholar
  31. Deroin J-P, Téreygeol F, Heckes J (2011) Evaluation of very high to medium resolution multispectral satellite imagery for geoarchaeology in arid regions—case study from Jabali, Yemen. J Archaeol Sci 38:101–114. doi: 10.1016/j.jas.2010.08.015 CrossRefGoogle Scholar
  32. Dincauze DF (2000) Environmental archaeology: principles and practice. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  33. Doneus M, Briese C, Fera M, Janner M (2008) Archaeological prospection of forested areas using full-waveform airborne laser scanning. J Archaeol Sci 35:882–893. doi: 10.1016/j.jas.2007.06.013 CrossRefGoogle Scholar
  34. Doneus M, Doneus N, Briese C, Pregesbauer M, Mandlburger G, Verhoeven G (2013) Airborne laser bathymetry—detecting and recording submerged archaeological sites from the air. J Archaeol Sci 40:2136–2151. doi: 10.1016/j.jas.2012.12.021 CrossRefGoogle Scholar
  35. Donoghue D, Shennan I (1988) The application of remote sensing to environmental archaeology. Geoarchaeology 3:275–285. doi: 10.1002/gea.3340030404 CrossRefGoogle Scholar
  36. Draganits E, Doneus M, Gansum T, Gustavsen L, Nau E, Tonning C, Trinks I, Neubauer W (2015) The late Nordic Iron Age and Viking Age royal burial site of Borre in Norway: ALS- and GPR-based landscape reconstruction and harbour location at an uplifting coastal area. Quat Int 367:96–110. doi: 10.1016/j.quaint.2014.04.045 CrossRefGoogle Scholar
  37. Ekman M (2009) The changing level of the Baltic Sea during 300 years: a clue to understanding the earth. Summer Institute for Historical Geophysics, Aland IslandsGoogle Scholar
  38. Embleton C, King CAM (1970) Glacial and periglacial geomorphology. MacMillan of Canada, TorontoGoogle Scholar
  39. Ch’ng E, Stone RJ, Arvanitis, TN (2004) The Shotton River and Mesolithic dwellings: recreating the past from geo-seismic data sources. In: The 5th International symposium on Virtual Reality, Archaeology, and Cultural Heritage, VAST04: Interdisciplinarity or “The Best of Both Worlds”: The Grand Challenge for Cultural Heritage Informatics in the 21st Century, The Eurographics Association, BrusselsGoogle Scholar
  40. Fairbridge RW (1985) The encyclopedia of geomorphology. Reinhold, New YorkGoogle Scholar
  41. Fitch S, Thomson K, Gaffney V (2005) Late Pleistocene and Holocene depositional systems and the palaeogeography of the Dogger Bank, North Sea. Quat Res 64:185–196. doi: 10.1016/j.yqres.2005.03.007 CrossRefGoogle Scholar
  42. French C (2002) Geoarchaeology in action: studies in soil micromorphology and landscape evolution. Routledge, LondonGoogle Scholar
  43. French C, Lewis H, Scaife R, Allen M (2005) New perspectives on Holocene landscape development in the southern English chalklands: the upper Allen valley, Cranborne Chase, Dorset. Geoarchaeology 20:109–134. doi: 10.1002/gea.20039 CrossRefGoogle Scholar
  44. Gabler M, Trinks I, Neubauer W, Nau E, Zitz T, Hinterleitner A, Thorèn H (2013) First large-scale geophysical archaeological prospection at Uppåkra. In: Hård B, Larsson L (eds) Folk, Fä och Fynd. Uppakrastudier, Lund, pp 191–207Google Scholar
  45. Gaffney C (2008) Detecting trends in the prediction of the buried past: a review of geophysical techniques in archaeology. Archaeometry 50:313–336. doi: 10.1111/j.1475-4754.2008.00388.x CrossRefGoogle Scholar
  46. Gansum T (1995) Jernaldergravskikk i Slagendalen: Oseberghaugen og storhaugene i Vestfold - lokale eller regionale symboler? En landskapsarkeologisk undersoekelse. Universitet i OsloGoogle Scholar
  47. Gansum T (1997) Flere funn fra Gokstad: en kystnær bosetting fra vikingtid. Nicolay 71:28–34Google Scholar
  48. Goldberg P, Macphail RI (2009) Practical and theoretical geoarchaeology. John Wiley & Sons, ChichesterGoogle Scholar
  49. Harari Z (1996) Ground-penetrating radar (GPR) for imaging stratigraphic features and groundwater in sand dunes. J Appl Geophys 36:43–52. doi: 10.1016/S0926-9851(96)00031-6 CrossRefGoogle Scholar
  50. Hickin AS, Kerr B, Barchyn TE, Paulen RC (2009) Using ground-penetrating radar and capacitively coupled resistivity to investigate 3-D fluvial architecture and grain size distribution of a gravel floodplain in northeast British Columbia, Canada. J Sediment Res 79:457–477. doi: 10.2110/jsr.2009.044 CrossRefGoogle Scholar
  51. Hinsch E (1945) En ny båtgrav på klassisk grunn. Viking IX:163–183Google Scholar
  52. Hodgson JM, Avery BW (1976) Soil survey field handbook: describing and sampling soil profiles. Rothamsted experimental station, HarpendenGoogle Scholar
  53. Howard AJ, Brown AG, Carey CJ, Challis K, Cooper LP, Kincey M, Toms P (2008) Archaeological resource modelling in temperate river valleys: a case study from the Trent Valley, UK. Antiquity 82:1040–1054CrossRefGoogle Scholar
  54. Ilves K (2009) Discovering harbours? Reflection on the state and development of landing site studies in the Baltic Sea region. J Marit Archaeol 4:149–163. doi: 10.1007/s11457-009-9050-5 CrossRefGoogle Scholar
  55. Ilves K (2012) Do ships shape the shore? An analysis of the credibility of ship archaeological evidence for landing site morphology in the Baltic Sea. Int J Naut Archaeol 41:94–105. doi: 10.1111/j.1095-9270.2011.00337.x CrossRefGoogle Scholar
  56. Jensen K (1999) Documentation and analysis of ancient ships. Dissertation, Technical University of DenmarkGoogle Scholar
  57. Jongmans D, Garambois S (2007) Geophysical investigation of landslides: a review. Bull Soc Geol Fr 178:101–112CrossRefGoogle Scholar
  58. Kneisel C, Hauck C, Fortier R, Moorman B (2008) Advances in geophysical methods for permafrost investigations. Permafr Periglac Process 19:157–178. doi: 10.1002/ppp.616 CrossRefGoogle Scholar
  59. Komar PD (1998) Beach processes and sedimentation, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  60. Lambeck K, Purcell A, Zhao J, Svensson N-O (2010) The Scandinavian Ice Sheet: from MIS 4 to the end of the Last Glacial Maximum. Boreas 39:410–435. doi: 10.1111/j.1502-3885.2010.00140.x CrossRefGoogle Scholar
  61. Lasaponara R, Masini N (2011) Satellite remote sensing in archaeology: past, present and future perspectives. J Archaeol Sci 38:1995–2002. doi: 10.1016/j.jas.2011.02.002 CrossRefGoogle Scholar
  62. Leckebusch J (2003) Ground-penetrating radar: a modern three-dimensional prospection method. Archaeol Prospect 10:213–240. doi: 10.1002/arp.211 CrossRefGoogle Scholar
  63. Leopold M, Plöckl T, Forstenaicher G, Völkel J (2010) Integrating pedological and geophysical methods to enhance the informative value of an archaeological prospection—the example of a Roman villa rustica near Regensburg, Germany. J Archaeol Sci 37:1731–1741. doi: 10.1016/j.jas.2010.01.033 CrossRefGoogle Scholar
  64. Linford N (2006) The application of geophysical methods to archaeological prospection. Rep Prog Phys 69:2205–2257. doi: 10.1088/0034-4885/69/7/R04 CrossRefGoogle Scholar
  65. Lunt IA, Hubbard SS, Rubin Y (2005) Soil moisture content estimation using ground-penetrating radar reflection data. J Hydrol 307:254–269. doi: 10.1016/j.jhydrol.2004.10.014 CrossRefGoogle Scholar
  66. Luo L, Wang X, Cai H, Li C, Ji W (2012) Mapping a paleodrainage system of the Keriya river using remote sensing data and historical materials. J Earth Sci Eng 2:712–721Google Scholar
  67. Macphail R, Bill J, Cannell R, Linderholm J, Rødsrud CL (2013) Integrated microstratigraphic investigations of coastal archaeological soils and sediments in Norway: the Gokstad ship burial mound and its environs including the Viking harbour settlement of Heimdaljordet, Vestfold. Quat Int 315:131–146. doi: 10.1016/j.quaint.2013.05.051 CrossRefGoogle Scholar
  68. Mangerud J, Gyllencreutz R, Lohne Ø, Svendsen JI (2011) Glacial history of Norway. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations—extent and chronology, Part IV - a closer look. Elsevier, Amsterdam, pp 279–298Google Scholar
  69. Mansfield C (2007) Reconstructing buried alluvial landscapes: the application of multiple geophysical and geoarchaeological techniques. Dissertation, University of ReadingGoogle Scholar
  70. McGraw JL, Bill J (2014) Preliminary investigations of a burial mound, Rom Mellem, 113/6, Tønsberg, Vestfold. Kulturhistorisk Museum Universitetet i Oslo Fornminneseksjonen, OsloGoogle Scholar
  71. McHugh WP, McCauley JF, Haynes CV, Breed CS, Schaber GG (1988) Paleorivers and geoarchaeology in the southern Egyptian Sahara. Geoarchaeology 3:1–40. doi: 10.1002/gea.3340030102 CrossRefGoogle Scholar
  72. Myhre B (1992) The royal cemetery at Borre, Vestfold: a Norwegian centre in European periphery. In: Carver M (ed) The age of Sutton Hoo. The seventh century in north-western Europe. Boydell Press, Woodbridge, pp 301–313Google Scholar
  73. Nau E, Trinks I, Schneidhofer P (2015) Archaeological geophysical prospection of the Gokstad landscape 2011–2012. Report, Vienna Institute for Archaeological ScienceGoogle Scholar
  74. Neal A (2004) Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth Sci Rev 66:261–330. doi: 10.1016/j.earscirev.2004.01.004 CrossRefGoogle Scholar
  75. Neal A, Pontee NI, Pye K, Richards J (2002) Internal structure of mixed-sand-and-gravel beach deposits revealed using ground-penetrating radar. Sedimentology 49:789–804. doi: 10.1046/j.1365-3091.2002.00468.x CrossRefGoogle Scholar
  76. Neubauer W (2001) Magnetische Prospektion in der Archäologie. Mitteilungen der Prähistorischen Kommission 44, Verlag der Österreichischen Akademie der Wissenschaften, WienGoogle Scholar
  77. Neubauer W (2004) GIS in archaeology - the interface between prospection and excavation. Archaeological Prospection 11:159–166Google Scholar
  78. Nicolaysen N (1854) Om Borre i 1852. Foren. til Nor. Fortidsminnesmerkers Bevar. Aarborg, p 25–32Google Scholar
  79. Nicolaysen N (1882) Langskibet fra Gokstad ved Sandefjord. Cammermeyer, KristianaGoogle Scholar
  80. Olesen O, Blikra LH, Braathen A, Dehls JF, Olsen L, Rise L, Roberts D, Riis F, Faleide JI, Anda E (2004) Neotectonic deformation in Norway and its implications: a review. Nor J Geol 84:3–34Google Scholar
  81. Pirazzoli PA, Pluet J (1991) World atlas of Holocene sea-level changes. Elsevier, AmsterdamGoogle Scholar
  82. Prøsch-Danielsen L (2006) Sea-level studies along the coast of southwestern Norway with emphasis on three short-lived Holocene marine events. AmS-Skrifter 20, Arkeologisk museum i Stavanger, StavangerGoogle Scholar
  83. Proulx-McInnis S, St-Hilaire A, Rousseau AN, Jutras S (2013) A review of ground-penetrating radar studies related to peatland stratigraphy with a case study on the determination of peat thickness in a northern boreal fen in Quebec, Canada. Prog Phys Geogr 37:767–786. doi: 10.1177/0309133313501106 CrossRefGoogle Scholar
  84. Pugh D (2004) Changing sea levels: effects of tides, weather and climate. Cambridge University Press, CambridgeGoogle Scholar
  85. Ramberg IB, Bryhni I, Nottvedt A, Rangnes K (2008) The making of a land: geology of Norway. Norwegian Geological Association, TrondheimGoogle Scholar
  86. Rapp GR, Hill CL (2006) Geoarchaeology: the earth-science approach to archaeological interpretation. Yale University Press, New HavenGoogle Scholar
  87. Roskin J, Blumberg DG, Katra I (2014) Last millennium development and dynamics of vegetated linear dunes inferred from ground-penetrating radar and optically stimulated luminescence ages. Sedimentology 61:1240–1260. doi: 10.1111/sed.12099 CrossRefGoogle Scholar
  88. Saey T, De Smedt P, De Clercq W, Meerschman E, Monirul IM, Van Meirvenne M (2013) Identifying soil patterns at different spatial scales with a multi-receiver EMI sensor. Soil Sci Soc Am J 77:382. doi: 10.2136/sssaj2012.0276 CrossRefGoogle Scholar
  89. Schrott L, Sass O (2008) Application of field geophysics in geomorphology: advances and limitations exemplified by case studies. Geomorphology 93:55–73. doi: 10.1016/j.geomorph.2006.12.024 CrossRefGoogle Scholar
  90. Short AD (2004) Beach. In: Goudie AS (ed) Encyclopedia of Geomorphologyl. Routledge, London, pp 62–67Google Scholar
  91. Siart C, Eitel B, Panagiotopoulos D (2008) Investigation of past archaeological landscapes using remote sensing and GIS: a multi-method case study from Mount Ida, Crete. J Archaeol Sci 35:2918–2926. doi: 10.1016/j.jas.2008.06.006 CrossRefGoogle Scholar
  92. Soil WRB (2006) World reference base for soil resources 2006, 20th edn. Food and agriculture organization of the United Nations, RomeGoogle Scholar
  93. Sørensen R (1988) In-situ rock weathering in Vestfold, Southeastern Norway. Geogr Ann 70:299–308CrossRefGoogle Scholar
  94. Sørensen R, Henningsmoen KE, Høeg HI, Stabell B, Bukholm KM (2007) Geology, soils, vegetation and sea-level change in the Kaupang area. In: Skre D (ed) Kaupang ski. Aarhus University Press, Oslo, pp 251–273Google Scholar
  95. Syvitski JPM, Shaw J (1995) Sedimentology and geomorphology of fjords. In: Perillo GME (ed) Geomorphology and sedimentology of estuaries. Elsevier Science, London, pp 113–178CrossRefGoogle Scholar
  96. Tamura T (2012) Beach ridges and prograded beach deposits as palaeoenvironment records. Earth Sci Rev 114:279–297. doi: 10.1016/j.earscirev.2012.06.004 CrossRefGoogle Scholar
  97. Tamura T, Saito Y, Bateman MD, Nguyen VL, Oanh Ta TK, Dan M (2012) Luminescence dating of beach ridges for characterizing multi-decadal to centennial deltaic shoreline changes during Late Holocene, Mekong River delta. Mar Geol 326–328:140–153. doi: 10.1016/j.margeo.2012.08.004 CrossRefGoogle Scholar
  98. Taylor M, Stone GW, Summer F (1996) Beach-ridges: a review. J Coast Res 12:612–621Google Scholar
  99. Trinks I, Johansson B, Gustafsson J, Emilsson J, Friborg J, Gustaffson C, Nissen J, Hinterleitner A (2010) Efficient, large-scale archaeological prospection using a true three-dimensional ground-penetrating radar array system. Archaeol Prospect 186:175–186. doi: 10.1002/arp CrossRefGoogle Scholar
  100. Trinks I, Neubauer W, Doneus M, Hinterleitner A, Doneus N, Verhoeven G, Löcker K, Kucera M, Nau E, Wallner M, Seren S (2015) Interdisciplinary archaeological prospection at unprecented scale and resolution. The first five years of the LBI ArchPro Research Initiative 2010-2015. Archaeologia Polona 53:144–147Google Scholar
  101. Van Dam RL (2012) Landform characterization using geophysics—recent advances, applications, and emerging tools. Geomorphology 137:57–73. doi: 10.1016/j.geomorph.2010.09.005 CrossRefGoogle Scholar
  102. Wegmann KW, Bohnenstiehl DR, Bowman JD, Homburg JA, Windingstad JD, Beery D (2012) Assessing coastal landscape change for archaeological purposes: integrating shallow geophysics, historical archives and geomorphology at Port Angeles, Washington, USA. Archaeol Prospect. doi: 10.1002/arp.1431 Google Scholar
  103. Weston DG (2001) Alluvium and geophysical prospection. Archaeol Prospect 8:265–272. doi: 10.1002/arp.160 CrossRefGoogle Scholar
  104. Wilkinson K (2003) Colluvial deposits in dry valleys of southern England as proxy indicators of palaeoenvironmental and land-use change. Geoarchaeology 18:725–755. doi: 10.1002/gea.10090 CrossRefGoogle Scholar
  105. Yoshiki S (2005) Beach stratigraphy. In: Schwartz M (ed) Encyclopedia of coastal science. Encyclopedia of Earth Science Series, Springer, Dordrecht, pp 179–181Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Petra Schneidhofer
    • 1
  • Erich Nau
    • 1
    • 2
  • Alois Hinterleitner
    • 1
    • 3
  • Agata Lugmayr
    • 1
  • Jan Bill
    • 4
  • Terje Gansum
    • 5
  • Knut Paasche
    • 2
  • Sirri Seren
    • 3
  • Wolfgang Neubauer
    • 1
    • 6
  • Erich Draganits
    • 7
  • Immo Trinks
    • 1
  1. 1.Ludwig Boltzmann Institute for Archaeological Prospection and Virtual ArchaeologyWienAustria
  2. 2.Norwegian Institute for Cultural Heritage ResearchOsloNorway
  3. 3.Central Institute for Meteorology and GeodynamicsWienAustria
  4. 4.Museum of Cultural HistoryUniversity of OsloOsloNorway
  5. 5.Department of Cultural Heritage ManagementVestfold FylkeskommuneTønsbergNorway
  6. 6.Vienna Institute for Archaeological ScienceUniversity of ViennaWienAustria
  7. 7.Department of Prehistory and Historical ArchaeologyUniversity of ViennaWienAustria

Personalised recommendations